![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Non-Colliding Random Walks, Tandem Queues, and Discrete Orthogonal Polynomial Ensembles
|
Wolfgang König, BRIMS, Hewlett-Packard Laboratories Neil O'Connell, BRIMS, Hewlett-Packard Laboratories Sébastien Roch, École Polytechnique |
Abstract
We show that the function h(x)=prodi < j(xj-xi)
is harmonic for any random walk in Rk with exchangeable
increments, provided the required moments exist. For the
subclass of random walks which can only exit the Weyl chamber
W={x: x1 < x2 < ...
< xk} onto a point where h vanishes, we define
the corresponding Doob h-transform. For certain special
cases, we show that the marginal distribution of the conditioned
process at a fixed time is given by a familiar discrete orthogonal
polynomial ensemble. These include the Krawtchouk and Charlier
ensembles, where the underlying walks are binomial and Poisson,
respectively. We refer to the corresponding conditioned processes
in these cases as the Krawtchouk and Charlier processes.
In [O'Connell and Yor (2001b)], a representation was obtained for the Charlier process
by considering a sequence of M/M/1 queues in tandem.
We present the analogue of this representation theorem for the
Krawtchouk process, by considering a sequence of discrete-time M/M/1 queues
in tandem.
We also present related results for random walks on the circle,
and relate a system of non-colliding walks in this case to
the discrete analogue of the circular unitary ensemble (CUE).
|
Full text: PDF
Pages: 1-24
Published on: October 12, 2001
|
Bibliography
-
S. Asmussen (1987),
Applied Probability and Queues,
Wiley.
Math. Review 89a:60208
-
J. Baik (2000),
Random vicious walks and random matrices,
Comm. Pure Appl. Math. 53, 1385-1410.
Math. Review CMP 1 773 413
-
J. Baik, P. Deift and K. Johansson (1999),
On the distribution of the length of the longest increasing subsequence
of random permutations,
J. Amer. Math. Soc. 12, no. 4, 1119-1178.
Math. Review 2000e:05006
-
Yu. Baryshnikov (2001),
GUES and queues,
Probab. Theor. Rel. Fields 119, 256-274.
Math. Review 1 818 248
-
Ph. Biane (1994),
Quelques propriétés du mouvement brownien dans un cone.
Stoch. Proc. Appl. 53, no. 2, 233-240.
Math. Review 95j:60129
-
Ph. Bougerol and Th. Jeulin,
Paths in Weyl chambers and random matrices,
In preparation, Math.
Review number not available.
-
P. Brémaud (1981),
Point Processes and Queues: Martingale Dynamics,
Springer, Berlin.
Review 82m:60058
-
P. Brémaud (1999),
Markov Chains, Gibbs Fields, Monte-Carlo Simulation, and Queues,
Texts in App. Maths., vol. 31, Springer.
Review 2000k:60137
-
P.J. Burke (1956),
The output of a queueing system,
Operations Research 4, no. 6, 699-704, Math. Review number not available.
-
J.N. Darroch and E. Seneta (1965),
On quasi-stationarity distributions in absorbing discrete-time finite Markov chains,
J. App. Prob. 2, 88-100.
Math. Review 35 #3731
-
J.L. Doob (1984),
Classical Potential Theory
and its Probabilistic Counterpart,
Springer.
Math. Review 85k:31001
-
F.J Dyson (1962),
A Brownian-motion model for the eigenvalues of a random
matrix. J. Math. Phys. 3, 1191-1198.
Math. Review 26 #5904
-
P.J. Forrester (1999),
Random walks and random permutations,
preprint,
(xxx: math.CO/9907037), Math.
Review number not available.
-
P.W. Glynn and W. Whitt (1991),
Departures from many queues in series,
Ann. Appl. Prob. 1, no. 4, 546-572.
Math. Review 92i:60162
-
D. Grabiner (1999),
Brownian motion in a Weyl chamber, non-colliding
particles, and random matrices.
Ann. Inst. H. Poincaré Probab.
Statist. 35, no. 2, 177-204.
Math.
Review 2000i:60091
-
J. Gravner, C.A. Tracy and H. Widom (2001),
Limit theorems for height fluctuations in a class of discrete space
and time growth models,
J. Stat. Phys. 102, nos. 5-6, 1085-1132.
Math. Review CMP 1 830 441
-
J.M. Harrison and R.J. Williams (1990),
On the quasireversibility of a multiclass Brownian service station,
Ann. Probab. 18, 1249-1268.
Math. Review 91i:60204
-
D. Hobson and W. Werner (1996),
Non-colliding Brownian motion on the
circle,
Bull. Math. Soc. 28, 643-650.
Math.
Review 97k:60217
-
K. Johansson (2001),
Discrete orthogonal polynomial ensembles and the Plancherel measure,
Ann. Math. (2) 253, no. 1, 259--296.
Math. Review CMP 1 826 414
-
K. Johansson (2000),
Shape fluctuations and random matrices,
Commun. Math. Phys. 209, 437-476.
Math. Review 2001h:60177
-
K. Johansson (2000),
Non-intersecting paths, random tilings and random matrices, preprint, Math.
Review number not available.
-
S.P. Karlin and G. MacGregor (1959),
Coincidence probabilities,
Pacif. J. Math. 9, 1141-1164.
Math.
Review 22:5072
-
F.P. Kelly (1979),
Reversibility and Stochastic Networks,
Wiley.
Math. Review 81j:60105
-
W. König and Neil O'Connell (2001),
Eigenvalues of the Laguerre process as non-colliding squared Bessel processes,
ECP, Vol. 6 (2001) Paper no. 11, pages 107-114, Math.
Review number not available.
-
M.L. Mehta (1991),
Random Matrices. Second Edition,
Academic Press.
Math.
Review 92f:82002
-
H. Minc (1988),
Nonnegative Matrices,
Wiley.
Math. Review 89i:15001
-
Neil O'Connell and Marc Yor (2001),
Brownian analogues of Burke's theorem,
Stoch. Proc. Appl., 96 (2001), no. 2, 285--30,
Math. Review 1 865 759
-
Neil O'Connell and Marc Yor (2001),
A representation for non-colliding random walks,
ECP, Vol. 7 (2002) Paper no. 1, pages 1-12, Math.
Review number not available.
-
V.V. Petrov (1975),
Sums of Independent Random Variables,
Springer, Berlin.
Math. Review 52 #9335
-
R.G. Pinsky (1985),
On the convergence of diffusion processes conditioned
to remain in a bounded region for large time to limiting positive recurrent diffusion processes,
Ann. Prob. 13:2, 363-378.
Math. Review 86i:60201
-
J.W. Pitman (1975),
One-dimensional Brownian motion and the three-dimensional Bessel process,
Adv. Appl. Probab. 7, 511-526.
Math. Review 51 #11677
-
J.W. Pitman and L.C.G. Rogers (1981),
Markov functions,
Ann. Probab. 9, 573-582.
Math. Review 82j:60133
-
E. Reich (1957),
Waiting times when queues are in tandem,
Ann. Math. Statist. 28, 768-773.
Math. Review 19,1203b
-
Ph. Robert (2000),
Réseaux et files d'attente: méthodes probabilistes,
Math. et Applications, vol. 35. Springer, Math.
Review number not available.
-
C.A. Tracy and H. Widom (1994),
Fredholm determinants, differential equations and matrix models,
Comm. Math. Phys. 163, no. 1, 33-72.
Math. Review 95e:82005
-
David Williams (1979),
Diffusions, Markov Processes, and Martingales.
Volume 1: Foundations.
Wiley.
Math. Review 80i:60100
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|