![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Moderate deviations for stable Markov chains and regression models
|
Julien Worms, Universit'e de Marne La Vall'ee |
Abstract
We prove moderate deviations principles for
-
unbounded additive functionals of the form
$S_n = sum_{j=1}^{n} g(X^{(p)}_{j-1})$,
where $(X_n)_{ninbN}$ is a stable $bR^d$-valued functional
autoregressive model of order $p$ with white
noise and stationary distribution $mu$, and $g$ is an
$bR^q$-valued Lipschitz function of order $(r,s)$;
- the error of the least squares estimator (LSE) of
the matrix $theta$ in an $bR^d$-valued
regression model
$X_n = theta^t phi_{n-1} + epsilon_n$, where $(epsilon_n)$
is a generalized gaussian noise.
We apply these results to study the error of the LSE for a stable $bR^d$-valued linear
autoregressive model of order $p$.
|
Full text: PDF
Pages: 1-28
Published on: April 16, 1999
|
Bibliography
- A. De Acosta (1990).
Large deviations for empirical measures of Markov chains,
J. Theoretical Prob. 3,, 395-431,
Math. Review 91j:60051
- A. De Acosta (1997).
Moderate deviations for empirical measures of Markov chains: lower bounds,
Ann. Probability
25,
259-284,
Math. Review 98f:60049
- A. De Acosta and X. Chen (1998).
Moderate deviations for empirical measures of Markov chains: upper bounds,
J. Theoretical Prob.
11,
1075--1110,
Math. Review 1 660 920
- A. Benveniste M. Metivier and P. Priouret (1990).
Adaptive algorithms and stochastic appproximation,
Springer
Math. Review 92h:62137
- B. Bercu F. Gamboa and A. Rouault (1997).
Large deviations for quadratic forms of stationary Gaussian processes,
Stoch. Proc. and their Appl.
71,
75-90,
Math. Review 97c:60072
- A.A. Borovkov (1991).
Lyapunov functions and multidimensionnal markov chains,
Theory of probability and applications
36,
1-18,
Math. Review 93g:60136
- W. Bryc and A. Dembo (1995).
On large deviations of empirical measures for stationary Gaussian processes,
Stochastic Proc. and their Appl.
58,
23-34,
Math. Review 96f:60038
- W. Bryc and A. Dembo (1996).
Large deviations and strong mixing,
Ann. Inst. Henri Poincare, Probab. stat.
32,
549-569,
Math. Review 97k:60075
- W. Bryc and W. Smolenski (1993).
On large deviations of empirical measures for quadratic functional of the autoregressive process,
Stat. and probability letters
17,
281-285,
Math. Review 93h:60037
- A. Dembo (1996).
Moderate deviations for martingales with bounded jumps,
Electronic Communication in Probab.
1,
11-17,
Math. Review 97k:60077
- J. Deshayes and D. Picard (1979).
Grandes et moyennes deviations pour les marches aleatoires,
Asterisque
68,
53-70,
Math. Review number not available
- J.D. Deuschel and D.W. Stroock (1989).
Large deviations,
Academic press ,
Math. Review 90h:60026
- I.H. Dinwoodie and P. Ney (1995).
Occupation measures of Markov chains,
J. Theoretical Prob.
8 (3),
679-691,
Math. Review 96i:60026
- M.D. Donsker and S.R.S. Varadhan (1975).
Asymptotic evaluation of certain Markov process expectations for large time I,
Commun. Pure Appl. Math.
28,
1-47,
Math. Review 52:6883
- M.D. Donsker and S.R.S. Varadhan (1975).
Asymptotic evaluation of certain Markov process expectations for large time II,
Commun. Pure Appl. Math.
28,
279-301,
Math. Review 52:6883
- M.D. Donsker and S.R.S. Varadhan (1976).
Asymptotic evaluation of certain Markov process expectations for large time III,
Commun. Pure Appl. Math.
29,
389-461,
Math. Review 55:1492
- M. Duflo (1997).
Random Iterative Models,
Springer ,
Math. Review 98m:62239
- P. Dupuis and R.S. Ellis (1997).
A weak convergence approach to the theory of large deviations,
Wiley ,
Math. Review 1 431 744.
- R.S. Ellis (1988).
Large deviations for the empirical measure of a Markov chain with
an application to the multivariate empirical measure,
Ann. Probability
16,
1496-1508,
Math. Review 90a:6055.
- F.Q. Gao (1996).
Moderate deviations for martingales and mixing processes,
Stochastic processes and appl.
61,
263-277,
Math. Review 97g:60039
- R.A. Horn and C.R. Johnson (1991).
Topics in matrix analysis,
Cambridge University Press ,
Math. Review 92e:15003
- N.C. Jain (1990).
Large deviation lower bounds for additive functionals of Markov processes:
discrete time, non compact case,
Ann. probability
18,
1071-1098,
Math. Review 91g:60037
- R. Liptser (1996).
Large deviation property for occupation measures of Markov processes:
discrete time, non compact case,
Theory probability and appl.
41,
35-54,
Math. Review 97k:60081
- R.Sh. Liptser and A.A. Puhalskii (1992).
Limit theorems on large deviations for semi-martingales,
Stochastics and stochastic reports
38,
201-249,
Math. Review 95f:60032
- R.S. Liptser O.V. Gulinskii S.V. Lototskii (1994).
Large deviations for unbounded additive functionnals of a
Markov process with discrete time (non compact case),
J. Appl. Math. Stoch. Anal.
7 (3),
423-436,
Math. Review 96e:60045
- S.P. Meyn and R.L. Tweedie (1993).
Markov Chains and Stochastic Stability,
Springer
Math. Review 95j:60103
- V.V. Petrov (1995).
Limit theorems of probability theory, sequences of independent random variables,
Clarendon Press, Oxford
Math. Review 96h:60048
- A.A. Puhalskii (1994).
The method of stochastic exponentials for large deviations,
Stochastic processes and appl.
54,
45-70,
Math. Review 95j:60043
- A.A. Puhalskii (1997).
Large deviations of semimartingales: a maxingale problem approach I:
limits as solutions to a maxingale problem,
Stochastics and Stochastics Reports
61,
141-243,
Math. Review 98h:60033
- J. Worms (1998).
Moderate deviations for regression models,
Preprint, Universit'e de Marne-la-Vall'ee (France), number 1
- J. Worms (1999).
Principes de d'eviations mod'er'ees pour des mod`eles
autor'egressifs d'ordre p
(moderate deviations principles for autoregressive models of order p),
Comptes Rendus de l'Acad'emie des Sciences, s'erie 1,
328 (1),
67-72
Math. Review 1 674 386
- L. Wu (1995).
Moderate deviations of dependent random variables related to a CLT,
Ann. of probability
23,
420-445,
Math. Review 96f:60047
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|