![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Davar Khoshnevisan, University of Utah Yuval Peres, University of California, Berkeley Yimin Xiao, University of Utah |
Abstract
Orey and Taylor (1974) introduced sets of ``fast
points'' where Brownian increments are exceptionally large,
They proved that for $lambda in (0,1]$, the Hausdorff dimension of
${rm F}(lambda)$ is $1-lambda^2$ a.s.
We prove that for any analytic set $E subset [0,1]$, the supremum
of the $lambda$ such that $E$ intersects ${rm F}(lambda)$ a.s.
equals $sqrt{dimp E }$, where $dimp E$ is the {em packing dimension/}
of $E$. We derive this from a general result that applies to many other
random fractals defined by limsup operations. This result also yields
extensions of certain ``fractal functional limit laws'' due to Deheuvels
and Mason (1994). In particular, we prove that for any absolutely continuous
function $f$ such that $f(0)=0$ and the energy $int_0^1 |f'|^2 , dt $
is lower than the packing dimension of $E$, there a.s. exists some
$t in E$ so that $f$ can be uniformly approximated in $[0,1]$ by normalized
Brownian increments $s mapsto [X(t+sh)-X(t)] / sqrt{ 2h|log h|}$;
such uniform approximation is a.s.
impossible if the energy of $f$ is higher than the
packing dimension of $E$.
|
Full text: PDF
Pages: 1-24
Published on: February 9, 2000
|
Bibliography
-
A. de Acosta,
Small deviations in the functional central limit theorem with
applications to functional laws of the iterated logarithm.
Ann. Probab. 11, (1983), 78--101.
Math. Review number
MR84m:60038
-
R. J. Adler,
An Introduction to Continuity, Extrema, and Related Topics for
General Gaussian Processes,
Institute of Mathematical Statistics. Hayward, CA. 1990.
Math. Review number
MR92g:60053
-
N. Bingham, C. Goldie and J. Teugels,
Regular Variation. Cambridge University Press, 1987.
Math. Review number
MR90i:26003
-
Z. Ciesielski and S. J. Taylor,
First passage times and sojourn times for Brownian motion in space
and the exact Hausdorff measure of the sample path.
Trans. Amer. Math. Soc. 103, 1962, 434--450.
Math. Review number
MR26:816
-
P. Deheuvels and D. M. Mason,
Random fractals generated by oscillations of processes with stationary
and independent increments. Probability in Banach spaces, 9 (Sandjberg,
1993),
73--89, Progr. Probab., 35, Birkhäuser Boston, 1994.
Math. Review number
MR96b:60191
-
P. Deheuvels and D. M. Mason,
Random fractal functional laws of the iterated logarithm.
Studia Sci. Math. Hungar. 34, (1998), 89--106.
Math. Review number
MR99g:60061
-
A. Dembo, Y. Peres, J. Rosen and O. Zeitouni,
Thick points for spatial Brownian motion: multifractal analysis of
occupation measure. Ann. of Probab. to appear.
Math. Review number not available.
-
A. Dembo and O. Zeitouni,
Large deviations techniques and applications, second edition.
Applications of Mathematics, 38. Springer-Verlag, New York, 1998.
Math. Review number
MR99d:60030
-
J. Hawkes,
On the Hausdorff dimension of the intersection of the range
of a stable process with a Borel set.
Z. Wahr. verw. Geb., 19, (1971), 90--102.
Math. Review number
MR45:1252
-
K. Itô and H. P. McKean, Jr.,
Diffusion Processes and Their Sample Paths.
Springer-Verlag, Berlin-New York, 1965.
Math. Review number
MR33:8031
-
H. Joyce and D. Preiss,
On the existence of subsets of finite positive packing measure.
Mathematika, 42, (1995), 15--24.
Math. Review number
MR96g:28010
-
J.-P. Kahane,
Some Random Series of Functions, second edition.
Cambridge University Press, 1985.
Math. Review number
MR87m:60119
-
R. Kaufman,
Large increments of Brownian motion.
Nagoya Math. J., 56,
(1975), 139--145.
Math. Review number
MR51:7021
-
D. Khoshnevisan and Z. Shi,
Fast sets and points for fractional Brownian motion.
Séminaire de Probabilités XXXIV,
to appear. Math. Review number not available.
-
P. Lévy,
La mesure de Hausdorff de la courbe du mouvement brownien.
Giorn. Ist. Ital. Attuari, 16, (1953), 1--37.
Math. Review number
MR16:268f
-
M. B. Marcus,
Hölder conditions for Gaussian processes with stationary increments.
Trans. Amer. Math. Soc., 134, (1968), 29--52.
Math. Review number
MR37:5930
-
P. Mattila,
Geometry of Sets and Measures in Euclidean Spaces.
Cambridge University Press, 1995.
Math. Review number
MR96h:28006
-
J. R. Munkres,
Topology: a First Course.
Prentice-Hall, Inc., Englewood Cliffs, N.J. 1975.
Math. Review number
MR57:4063
-
S. Orey and W. E. Pruitt,
Sample functions of the N-parameter Wiener process.
Ann. of Probab.
1, (1973), 138--163.
Math. Review number
MR49 #11646
-
S. Orey and S. J. Taylor,
How often on a Brownian path does the law of the iterated logarithm fail?
Proc. London Math. Soc.,
28, (1974), 174--192.
Math. Review number
MR50 #11486
-
Y. Peres,
Intersection-equivalence of Brownian paths and certain branching processes.
Commun. Math. Phys.,
177, (1996), 417--434.
Math. Review number
MR98k:60143
-
Y. Peres,
Remarks on intersection-equivalence and capacity-equivalence.
Ann. Inst. Henri Poincaré
(Physique théorique) 64, (1996), 339--347.
Math. Review number
MR97j:60138
-
V. Strassen,
An invariance principle for the law of the iterated logarithm.
Z. Wahrsch. Verw. Gebiete, 3, (1964), 211--226.
Math. Review number
MR30:5379
-
S. J. Taylor, The measure theory of random fractals.
Math. Proc. Cambridge Phil. Soc., 100,
(1986), 383--406.
Math. Review number
MR87k:60189
-
J. B. Walsh,
An Introduction to Stochastic Partial Differential Equations.
Ecole d'été
de probabilités de Saint-Flour, XIV---1984,
265--439, Lecture Notes in Math.
1180, Springer, Berlin-New York, 1986.
Math. Review number
MR88a:60114
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|