Strict Concavity of the Half Plane Intersection Exponent for Planar Brownian Motion
Gregory F. Lawler, Duke University and Cornell University
Abstract
The intersection exponents for planar Brownian motion
measure the exponential decay of probabilities of nonintersection of
paths. We study the intersection exponent $xi(lambda_1,lambda_2)$
for Brownian motion restricted to a half plane which by conformal
invariance is the same as Brownian motion restricted
to an infinite strip. We show that $xi$ is a strictly
concave function. This result is used in another paper to
establish a universality result for conformally invariant
intersection exponents.
P. Berg and J. McGregor
(1966).
Elementary
Partial Differential Equations
Holden-Day
Math. Review 34:1652
X. Bressaud, R. Fernandez, A. Galves
(1999).
Decay of correlations for non-Holderian dynamics: a
coupling approach
Electron. J. Probab. 4 , paper no. 3
B. Duplantier
(1999).
Two-dimensional copolymers and exact conformal multifractality,
Phys. Rev. Lett. 82, 880--883.
G. F. Lawler
(1995).
Hausdorff dimension of cut points for Brownian motion,
Electron. J. Probab. 1, paper no.2.
Math. Review 97g:60111
G. F. Lawler
(1996).
The dimension of the frontier of planar Brownian
motion,
Electron. Comm. Prob. 1, paper no 5.
Math. Review 97g:60110
G. F. Lawler
(1997).
The frontier of a Brownian path is multifractal,
preprint.
G. F. Lawler
(1998).
Strict concavity of the intersection
exponent for Brownian motion in
two and three dimensions, Math. Phys. Electron.
J. 4, paper no. 5
Math. Review 2000e:60134
G. F. Lawler, W. Werner
(1999).
Intersection exponents for planar Brownian motion,
Ann. Probab. 27, 1601--1642.
G. F. Lawler, W. Werner
(1999).
Universality for conformally
invariant intersection exponents, preprint.