|
|
|
| | | | | |
|
|
|
|
|
Brownian Motion on Compact Manifolds: Cover Time and Late Points
|
Amir Dembo, Stanford University Yuval Peres, University of California, Berkeley Jay Rosen, College of Staten Island, CUNY |
Abstract
Let $M$ be a smooth, compact, connected Riemannian
manifold of dimension $d>2$ and without boundary.
Denote by $T(x,r)$ the hitting time of the ball of radius
$r$ centered at $x$ by Brownian motion on $M$.
Then, $C_r(M)=sup_{x in M} T(x,r)$ is the time it takes Brownian
motion to come within $r$ of all points in $M$.
We prove that $C_r(M)/r^{2-d}|log r|$ tends to gamma_d V(M)$ almost surely
as $ep rar 0$, where $V(M)$ is the Riemannian volume of $M$.
We also obtain the ``multi-fractal spectrum'' $f(alpha)$ for
``late points'',
|
Full text: PDF
Pages: 1-14
Published on: August 25, 2003
|
Bibliography
-
Robert B. Ash. Real analysis and probability. Academic Press, New York, 1972. MR55:8280
-
Thierry Aubin. Nonlinear analysis on manifolds. Monge-Ampère equations, volume 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1982. MR85j:58002
-
Gilles Courtois. Spectrum of manifolds with holes. J. Funct. Anal., 134(1):194-221, 1995. MR97b:58142
-
Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni. Thick points for spatial Brownian motion: multifractal analysis of occupation measure. Ann. Probab., 28(1):1-35, 2000. MR2001g:60194
-
Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni. Thin points for Brownian motion. Ann. Inst. H. Poincaré Probab. Statist., 36(6):749-774, 2000. MR2002k:60164
-
Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni. Thick points for planar Brownian motion and the Erdos-Taylor conjecture on random walk. Acta Math., 186(2):239-270, 2001. MR2002k:60106
-
A. Dembo, Y. Peres, J. Rosen and O. Zeitouni, Cover times for Brownian motion and random walks in two dimensions, Ann. Math., to appear..
-
James Eells, Jr. and J. H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86:109-160, 1964. MR29:1603
-
P. J. Fitzsimmons and Jim Pitman. Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Process. Appl., 79(1):117-134, 1999. MR2000a:60136
-
H. Joyce and D. Preiss. On the existence of subsets of finite positive packing measure. Mathematika, 42(1):15-24, 1995. MR96g:28010
-
Davar Khoshnevisan, Yuval Peres, and Yimin Xiao. Limsup random fractals. Electron. J. Probab., 5:no. 5, 24 pp. (electronic), 2000. MR2001a:60095
-
Peter Matthews. Covering problems for Brownian motion on spheres. Ann. Probab., 16(1):189-199, 1988. MR89a:60190
-
Peter Matthews. Covering problems for Markov chains. Ann. Probab., 16(3):1215-1228, 1988. MR89j:60092
-
Steven Orey and S. James Taylor. How often on a Brownian path does the law of iterated logarithm fail? Proc. London Math. Soc. (3), 28:174-192, 1974. MR50:11486
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|