|
|
|
| | | | | |
|
|
|
|
|
Ordered Additive Coalescent and Fragmentations Associated to Lévy Processes with No Positive Jumps
|
Grégory Miermont, Université Pierre et Marie Curie |
Abstract
We study here the fragmentation processes that can be derived from
Lévy processes with no positive jumps in the same manner as in the
case of a Brownian motion (cf. Bertoin [4]). One of our
motivations is that such a representation of fragmentation processes by
excursion-type functions induces a particular order on the fragments
which is closely related to the additivity of the
coalescent kernel. We identify the fragmentation processes obtained
this way as a mixing of time-reversed extremal additive coalescents by
analogy with the work of Aldous and Pitman [2], and we
make its semigroup explicit.
|
Full text: PDF
Pages: 1-33
Published on: June 30, 2001
|
Bibliography
-
Aldous, D. J. and Pitman, J. (1998)
The standard
additive coalescent, Ann. Probab. 26, No. 4, 1703-1726.
Math. Review 2000d:60121
-
Aldous, D. J. and Pitman, J. (2000)
Inhomogeneous
continuum random trees and the entrance boundary of the additive
coalescent, Prob. Theory Relat. Fields 118, No. 4, 455-482.
Math. Review 1 808 372
-
Bertoin, J. (1996)
Lévy Processes,
Cambridge University Press, Cambridge.
Math. Review 98e:60117
-
Bertoin, J. (2000) A fragmentation process connected to Brownian motion
,
Prob. Theory Relat. Fields 117, No. 2, 289-301.
Math. Review CMP 1 771 665 (2000:15)
-
Bertoin, J. (2001)
Eternal additive coalescents and certain bridges with exchangeable
increments, Ann. Probab. 29, No. 1, 344-360.
Math. Review CMP 1 825 153 (2001:11)
-
Bertoin, J. (2000)
Clustering statistics for sticky
particles with Brownian initial velocity, J. Math. Pures Appl. (9)
79, No. 2, 173-194.
Math. Review 2001g:60191
-
Biane, P. (1986)
Relations entre pont et excursion du mouvement brownien réel,
Ann. Inst. Henri Poincaré 22, No. 1, 1-7.
Math. Review 87k:60186
-
Chassaing, P. and Louchard, G. (2001)
Phase
transition for parking blocks, brownian excursion and
coalescence,
Random Structures and Algorithms (to appear).
Math. Review number not available. Available at
http://www.iecn.u-nancy.fr/~chassain/.
-
Chaumont, L. (1994)
Sur certains processus de Lévy
conditionnés à rester positifs,
Stochastics and Stochastic
Reports 47, No. 1-2, 1-20.
Math. Review 2001e:60093
-
Chaumont, L. (1997)
Excursion normalisée, méandre et
pont pour les processus de Lévy stables,
Bull. Sci. Math.
121, No. 5, 377-403.
Math. Review 99a:60077
-
Chaumont, L. (2000)
An extension of Vervaat's
transformation and its consequences,
J. Theor. Probab.
13, No. 1, 259-277.
Math. Review 2001a:60093
-
Evans, S. N. and Pitman, J. (1998)
Construction of
Markovian coalescents,
Ann. Inst. Henri Poincaré 34, No. 3,
339-383.
Math. Review 99k:60184
-
Fitzsimmons, P. J., Pitman, J. and Yor, M. (1992)
Markovian bridges: construction, Palm interpretation, and splicing,
Seminar on Stochastic processes, 1992, pp. 101-134, Birkhäuser, Boston,
Mass.
Math. Review 95i:60070
-
Kallenberg, O. (1973)
Canonical representations and
convergence criteria for processes with interchangeable
increments,
Z. Wahrscheinlichkeitstheorie verw. Geb.
27, 23-36.
Math. Review 52 #15641
-
Kallenberg, O. (1974)
Path properties of processes with
independent and interchangeable increments,
Z. Wahrscheinlichkeitstheorie verw. Geb.
28, 257-271.
Math. Review 53 #6715
-
Knight, F. B. (1996)
The uniform law for exchangeable
and Lévy process bridges,
Hommage à P. A. Meyer et J. Neveu.
Astérisque No. 236, 171-188.
Math. Review 97j:60137
-
Millar, P. W. (1981)
Comparison theorems for sample function growth,
Ann. Probab. 9, No. 2, 330-334.
Math. Review 82d:60077
-
Norris J. R. (2000)
Cluster coagulation,
Comm. Math. Phys. 209, No. 2, 407-435.
Math. Review 1 737 990
-
Perman, M. (1993)
Order statistics for jumps of
normalised subordinators,
Stochastic Process. Appl. 46, No. 2, 267-281.
Math. Review 94g:60141
-
Perman, M., Pitman, J. and Yor, M. (1992)
Size-biased sampling of Poisson point processes and excursions,
Probab. Theory Related Fields 92, No. 1, 21-39.
Math. Review 93d:60088
-
Pitman, J. and Yor, M. (1992)
Arcsine laws and
interval partitions derived from a stable subordinator,
Proc. London Math. Soc. (3) 65, No. 2, 326-356.
Math. Review 93e:60152
-
Sato, K.-I. (1999)
Lévy Processes and Infinitely Divisible Distributions,
Cambridge University Press, Cambridge.
Math. Review CMP 1 739 520 (2000:08)
-
Schweinsberg, J. (2001)
Applications of the continuous-time ballot theorem to
Brownian motion and related processes,
Stochastic Process. Appl. (to appear). Math. Review number not available.
Available at
http://www.stat.berkeley.edu/users/jason/index.html.
-
Takács, L. (1967)
Combinatorial Methods in the Theory
of Stochastic Processes,
John Wiley & Sons, Inc., New York-London-Sydney.
Math. Review 36 #947
-
Winkel, M. (2000)
Right-inverses of non-symmetric Lévy processes,
Preprint. Math. Review number not available. Available at
http://www.proba.jussieu.fr/mathdoc/preprints/winkel.Fri_Oct_20_15_57_38_CEST_2000.html.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|