![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Ito Formula and Local Time for the Fractional Brownian Sheet
|
Ciprian A. Tudor, Laboratoire de Probabilit'{e}s, Universit'{e} de Paris 6 Frederi G. Viens, Purdue University |
Abstract
Using the techniques of the stochastic calculus of variations for Gaussian
processes, we derive an It^{o} formula for the fractional Brownian sheet with
Hurst parameters bigger than $1/2$. As an application, we give a stochastic
integral representation for the local time of the fractional Brownian sheet.
|
Full text: PDF
Pages: 1-31
Published on: August 21, 2003
|
Bibliography
-
E. Aḷs, O. Mazet, D. Nualart (2001). Stochatic calculus with respect to Gaussian processes. Annals of probability, 29: 766-801. MR 2002g:60083
-
E. Aḷs, D. Nualart (2001). Stochastic integration with respect to the fractional Brownian motion. Preprint. MR 1%20978%20896
-
A. Ayache, S. Léger and M. Pontier (2002). Drap Brownien fractionnaire. Potential Analysis, 17(1), 31-43. MR 2003i:60086
-
X. Bardina, M. Jolis and C.A. Tudor (2002). Weak convergence to the fractional Brownian sheet. Preprint nùm. 06/2002, Universitat Auṭnoma de Barcelona. Math. Review number not available.
-
S. Berman (1973). Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J., 23: 69-94. MR 47:5944
-
P. Carmona, L.Coutin (1998). Stochastic integration with respect to fractional Brownian motion. Preprint. Math. Review number not available.
-
Cheridito, D. Nualart (2002). Stochastic integral of divergence type with respect to fBm with H in (0;1/2). Preprint. Math. Review number not available.
-
L. Coutin, D. Nualart and C.A. Tudor (2001). The Tanaka formula for the fractional Brownian motion. Stoc. Proc. Appl., 94(2):301-315. MR 2002i:60108
-
L. Decreusefond, A. Ustunel (1998). Stochastic analysis of the fractional Brownian motion. Potential Analysis, 10:177-214. MR 2000b:60133
-
M. Dozzi (1989). Stochastic processes with a multidimensional parameter. Longman Scientific and Technical. MR 90g:60036
-
T. E. Duncan, Y. Hu and B. Pasik-Duncan (2000). Stochastic calculus for fractional Brownian motion I. Theory. Siam J. Control Optim., 38(2):582-612. MR 2001g:60129
-
M. Eddahbi, R. Lacayo, J.L. Sole, C.A. Tudor, J. Vives (2002). Regularity and asymptotic behaviour of the local time for the d-dimensional fractional Brownian motion with N-parameters. Preprint. Math. Review number not available.
-
Y. Hu, B. Oksendal (2002). Chaos expansion of local time of fractional Brownian motions. Stoch. Analy. Appl., 20 (4): 815-837. MR 2003h:60054
-
P. Imkeller (1984). Stochastic analysis and local time for (N.d)-Wiener process. Ann. Inst. Henri Poincaré, 20(1): 75-101. MR 86i:60194
-
B.B. Mandelbrot, J.W. Van Ness. Fractional Brownian motion, fractional noises and application. SIAM Review, 10(4):422-437. MR 39:3572
-
D. Nualart. Une formule d'Itô pour les martingales continues à deux indices et quelques applications. Ann. Inst. Henri Poincaré, 20(3):251-275. MR 86a:60082
-
D. Nualart (1995). Malliavin Calculus and Related Topics. Springer V. MR 96k:60130
-
Y. Xiao, T. Zhang (2002). Local times of fractional Brownian sheets. Probab. Theory Relat. Fields, to appear. MR 1936017
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|