On Cauchy-Dirichlet Problem in Half-Space for Linear Integro-Differential Equations in Weighted Hoelder Spaces
Remigijus Mikulevicius, Henrikas Pragarauskas,
Abstract
We study the Cauchy-Dirichlet problem in half-space for linear
parabolic integro-differential equations. Sufficient conditions are
derived under which the problem has a unique solution in weighted
Hoelder classes. The result can be used in the regularity
analysis of certain functionals arising in the theory of Markov
processes.
J. M. Bony. Problem de Dirichlet et semi-groupe fortement fellerien associees a
un operateur integrodifferentielle, C. R. Acad. Sci.,265
(1967), 362-364.
M. G. Garroni and J.-L. Menaldi. Green Functions for Second Order Parabolic
Integro-Differential Problems, Longman Scientific, Essex, 1992.
D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of
Second Order, Springer, New York, 1983.
G. Gimbert and P. L. Lions. Existence and regularity results for solutions of
second order elliptic integrodifferential equations. Richerce di Matematica
33 (1984), 315-358.
R. Mikulevicius and H. Pragarauskas. On classical solutions of boundary value
problems for certain nonlinear integro-differential equations. Lithuanina
Math. J. 34 (1994), 275-287.
R. Mikulevicius and H. Pragarauskas. On Cauchy-Dirichlet problem in half-space
for parabolic SPDEs in weighted Hoelder spaces. Stoch. Proc. Appl.106
(2003), 185-222.
L. Stupelis. Solvability of thye first boundary-value problem in
W_{p,0}^{2}(Omega ) for a class of integro-differential equations.
Lithuanian Math. J.14 (1974), 502-506.
L. Stupelis. Navier-Stokes Equations in Irregular Domains. Kluwer,
Dordrecht, 1995.