![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Convergence of lattice trees to super-Brownian motion above the critical dimension
|
Mark P. Holmes, U. Auckland |
Abstract
We use the lace expansion to prove asymptotic formulae for the Fourier transforms of the r-point functions for a spread-out model of critically weighted lattice trees on the d-dimensional integer lattice for d>8. A lattice tree containing the origin defines a sequence of measures on the lattice, and the statistical mechanics literature gives rise to a natural probability measure on the collection of such lattice trees. Under this probability measure, our results, together with the appropriate limiting behaviour for the survival probability, imply convergence to super-Brownian excursion in the sense of finite-dimensional distributions.
|
Full text: PDF
Pages: 671-755
Published on: April 18, 2008
|
Bibliography
-
R. Adler.
Superprocess local and intersection local times and their
corresponding particle pictures.
In Seminar on Stochastic Processes 1992. Birkhauser,
Boston, 1993.
MR1278075
-
D. Aldous.
Tree-based models for random distribution of mass.
J. Stat. Phys., 73:625--641, 1993.
MR1251658
-
D. Brydges and J. Imbrie.
Dimensional reduction formulas for branched polymer correlation
functions.
J. Stat. Phys., 110:503--518, 2003.
MR1964682
-
D. Brydges and T. Spencer.
Self-avoiding walk in 5 or more dimensions.
Commun. Math. Phys., 97:125--148, 1985.
MR0782962
-
D. Dawson, I. Iscoe, and E. Perkins.
Super-Brownian motion: path properties and hitting probabilities.
Probab. Theory Relat. Fields., 83:135--205, 1989.
MR1012498
-
E. Derbez and G. Slade.
The scaling limit of lattice trees in high dimensions.
Commun. Math. Phys., 193:69--104, 1998.
MR1620301
-
J. Frohlich.
Mathematical aspects of the physics of disordered systems.
In Phenomenes critiques, systemes aleatoires,
theories de jauge, Part II. North-Holland, Amsterdam, 1986.
MR0880538
-
T. Hara, R. van der Hofstad, and G. Slade.
Critical two-point functions and the lace expansion for spread-out
high-dimensional percolation and related models.
Ann. Probab., 31:349--408, 2003.
MR1959796
-
T. Hara and G. Slade.
On the upper critical dimension of lattice trees and lattice animals.
J. Stat. Phys., 59:1469--1510, 1990.
MR1063208
-
T. Hara and G. Slade.
The number and size of branched polymers in high dimensions.
J. Stat. Phys., 67:1009--1038, 1992.
MR1170084
-
T. Hara and G. Slade.
The scaling limit of the incipient infinite cluster in
high-dimensional percolation. i. critical exponents.
J. Stat. Phys., 99:1075--1168, 2000.
MR1773141
-
T. Hara and G. Slade.
The scaling limit of the incipient infinite cluster in
high-dimensional percolation. ii. integrated super-Brownian excursion.
J. Math. Phys., 41:1244--1293, 2000.
MR1757958
-
R. van der Hofstad, F. den Hollander, and G. Slade.
The survival probability for critical spread-out oriented percolation
above 4+1 dimensions. I. Induction.
Probab. Theory Relat. Fields., 138:363--389, 2007.
MR2299712
-
R. van der Hofstad, F. den Hollander, and G. Slade.
The survival probability for critical spread-out oriented percolation
above 4+1 dimensions. II. Expansion.
Ann. Inst. H. Poincare Probab. Statist., 43:509--570, 2007.
MR2347096
-
R. van der Hofstad, M. Holmes, and G. Slade.
An extension of the generalised inductive approach to the lace
expansion.
Preprint, 2007.
-
R. van der Hofstad and A. Sakai.
Convergence of the critical finite-range contact process to
super-Brownian motion above 4 spatial dimensions.
In preparation, 2007.
-
R. van der Hofstad and G. Slade.
A generalised inductive approach to the lace expansion.
Probab. Theory Relat. Fields., 122:389--430, 2002.
MR1892852
-
R. van der Hofstad and G. Slade.
Convergence of critical oriented percolation to super-Brownian
motion above 4+1 dimensions.
Ann. Inst. H. Poincar'e Probab. Statist., 39(3):413--485,
2003.
MR1978987
-
R. van der Hofstad and G. Slade.
The lace expansion on a tree with application to networks of
self-avoiding walks.
Adv. Appl. Math., 30:471--528, 2003.
MR1973954
-
M. Holmes, A. Jarai, A. Sakai, and G. Slade.
High-dimensional graphical networks of self-avoiding walks.
Canadian Journal Math., 56:77--114, 2004.
MR2031124
-
M. Holmes and E. Perkins.
Weak convergence of measure-valued processes and r-point functions.
Ann. Probab., 35:1769--1782, 2007.
MR2349574
-
J. Klein.
Rigorous results for branched polymer models with excluded volume.
J. Chem. Phys., 75:5186--5189, 1981.
-
T. Lubensky and J. Isaacson.
Statistics of lattice animals and dilute branched polymers.
Phys. Rev., A20:2130--2146, 1979.
-
N. Madras and G. Slade.
The Self-Avoiding Walk.
Birkhauser, Boston, 1993.
MR1197356
-
E. Perkins.
Dawson-Watanabe superprocesses and measure-valued diffusions.
In Lectures on Probability Theory and Statistics, no. 1781,
Ecole d'Ete de Probabilites de Saint Flour 1999. Springer, Berlin, 2002.
MR1915445
-
G. Slade.
The lace expansion and its applications, volume 1879 of
Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2006.
MR2239599
-
W. Werner.
Random planar curves and Schramm-Loewner evolutions.
In Lectures on Probability Theory and Statistics, no. 1840,
Ecole d'Ete de Probabilites de Saint Flour 2002. Springer, Berlin, 2004.
MR2079672
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|