|
|
|
| | | | | |
|
|
|
|
|
Convex concentration inequalities and forward-backward stochastic calculus
|
Thierry Klein, Universite Paul Sabatier Yutao Ma, Universite de La Rochelle Nicolas Privault, Universite de La Rochelle |
Abstract
Given (Mt)t ∈ R+ and (M*t)t ∈ R+ respectively a forward and a backward martingale with jumps
and continuous parts, we prove that E[φ (Mt+M*t)]
is non-decreasing in t when φ is a convex function, provided the local characteristics of (Mt)t ∈ R+ and (M*t)t ∈ R+ satisfy some comparison inequalities. We deduce convex concentration inequalities and deviation bounds for random variables admitting a predictable representation in terms of a Brownian motion and a non-necessarily independent jump component.
|
Full text: PDF
Pages: 486-512
Published on: July 7, 2006
|
Bibliography
-
C. Ané and M. Ledoux. On logarithmic Sobolev inequalities for continuous time random walks on graphs.Probab. Theory Related Fields 116 (2000), 573--602.Math. Review 2001i:60094
-
V. Bentkus. On Hoeffding's inequalities. Ann. Probab. 32 (2004), 1650--1673. Math. Review 2005e:60041
-
D.L. Burkholder.
Strong differential subordination and stochastic integration.
Ann. Probab. 22 (1994), 995--1025.
Math. Review 95h:60085
-
M. Capitaine, E.P. Hsu, and M. Ledoux.
Martingale representation and a simple proof of logarithmic Sobolev
inequalities on path spaces.
Electron. Comm. Probab. 2 (1997), 71--81.
Math. Review 99b:60136
-
C. Dellacherie, B. Maisonneuve, and P.A. Meyer.
Probabilités et Potentiel, volume 5.
5 (1992) Hermann.
Math. Review number not available.
-
M. Émery.
On the Azéma martingales.
Séminaire de Probabilités XXIII, Lecture Notes in Mathematics 1372
(1990), 66-87, Springer Verlag.
Math. Review 91e:60140
-
J. Jacod.
Calcul stochastique et problèmes de martingales.
Lecture Notes in Mathematics 714
(1979), Springer Verlag.
Math. Review 81e:60053
-
J. Jacod and J. Mémin.
Caractéristiques locales et conditions de continuité absolue pour
les semi-martingales.
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 35 (1976), 1--37.
Math. Review 0418223
-
O. Kallenberg.
Foundations of modern probability.
Probability and its Applications (2002), Springer Verlag.
Math. Review 2002m:60002
-
Th. Klein.
Inégalités de concentration, martingales et arbres aléatoires.
Thèse, Université de Versailles-Saint-Quentin (2003).
Math. Review number not available.
-
J. Ma, Ph. Protter, and J. San Martin.
Anticipating integrals for a class of martingales.
Bernoulli 4 (1998), 81--114.
Math. Review 99j:60071
-
D. Nualart and J. Vives.
Anticipative calculus for the Poisson process based on the Fock space.
Séminaire de Probabilités XXIV, Lecture Notes in Mathematics 1426
(1990), 154--165, Springer Verlag.
Math. Review 92i:60109
-
B. Øksendal and F. Proske.
White noise of Poisson random measures.
Potential Anal. 21 (2004), 375--403.
Math. Review 2005i:60134
-
J. Picard.
Formules de dualité sur l'espace de Poisson.
Ann. Inst. H. Poincaré Probab. Statist. 32 (1996), 509--548.
Math. Review 98c:60055
-
I. Pinelis.
Optimal tail comparison based on comparison of moments.
High dimensional probability (Oberwolfach, 1996),
Progr. Probab. 43
(1998), 297--314, Birkhäuser.
Math. Review 2000a:60026
-
N. Privault.
An extension of stochastic calculus to certain non-Markovian processes.
Prépublication 49
(1997), , Université d'Evry.
Math. Review number not available.
-
N. Privault.
Equivalence of gradients on configuration spaces.
Random Operators and Stochastic Equations 7
(1999), 241--262.
Math. Review 2000c:60087
-
Ph. Protter.
Stochastic integration and differential equations. A new approach.
Applications of Mathematics 21 (1990), Springer Verlag.
Math. Review 91i:60148
-
L. Wu.
A new modified logarithmic Sobolev inequality for Poisson point
processes and several applications.
Probab. Theory Related Fields 118 (2000), 427-438.
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|
|