Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 11 (2006) > Paper 19 open journal systems 


Large systems of path-repellent Brownian motions in a trap at positive temperature

Stefan Adams, Max Planck Institute for Mathematics in the Sciences
Jean-Bernard Bru, Johannes-Gutenberg-Universitat Mainz
Wolfgang Koenig, Universitat Leipzig


Abstract
We study a model of $ N $ mutually repellent Brownian motions under confinement to stay in some bounded region of space. Our model is defined in terms of a transformed path measure under a trap Hamiltonian, which prevents the motions from escaping to infinity, and a pair-interaction Hamiltonian, which imposes a repellency of the $N$ paths. In fact, this interaction is an $N$-dependent regularisation of the Brownian intersection local times, an object which is of independent interest in the theory of stochastic processes. The time horizon (interpreted as the inverse temperature) is kept fixed. We analyse the model for diverging number of Brownian motions in terms of a large deviation principle. The resulting variational formula is the positive-temperature analogue of the well-known Gross-Pitaevskii formula, which approximates the ground state of a certain dilute large quantum system; the kinetic energy term of that formula is replaced by a probabilistic energy functional. This study is a continuation of the analysis in [ABK06] where we considered the limit of diverging time (i.e., the zero-temperature limit) with fixed number of Brownian motions, followed by the limit for diverging number of motions.


Full text: PDF

Pages: 460-485

Published on: June 29, 2006


Bibliography
  1. S. Adams and J.B. Bru. Critical Analysis of the Bogoliubov Theory of Superfluidity. Physica A 332 (2004), 60-78. Math. Review 2048363 (2004m:82154)
  2. S. Adams and J.B. Bru. A New Microscopic Theory of Superfluidity at all Temperatures. Ann. Henri Poincar'e 5 (2004), 435-476. Math. Review 2067786 (2005g:82133)
  3. S. Adams, J.B. Bru and W. König. Large deviations for trapped interacting Brownian particles and paths. Ann. Probab. 34:4 in press (2006). Math. Review number not available.
  4. S. Adams and W. König. Large deviations for many Brownian bridges with symmetrised initial-terminal condition. Archive: math.PR/0603702 (2006). Math. Review number not available.
  5. E. Bolthausen, J.D. Deuschel and U. Schmock. Convergence of path measures arising from a mean field or polaron type interaction. Probab. Theory Rel. Fields 95 (1993), 283-310. Math. Review 1213193 (94c:60046)
  6. O. Bratteli and D.W. Robinson. Operator Algebras and Quantum Statistical Mechanics II. Springer Verlag, (1997). Math Review 1441540 (98e:82004)
  7. A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer-Verlag New York (1998). Math. Review number not available.
  8. J.D. Deuschel and D.W. Stroock. Large Deviations. AMS Chelsea Publishing, American Mathematical Society (2001). Math. Review 0997938 (90h:60026)
  9. W.H. Dickhoff and D. Van Neck. Many-Body Theory Exposed. World Scientific, Singapore (2005). Math. Review number not available.
  10. M.D. Donsker and S.R.S. Varadhan. Asymptotics for the polaron. Comm. Pure Appl. Math. 36:4 (1983) 505-528. MR0709647 (85i:82007)
  11. D. Geman, J. Horrowitz and J. Rosen. A local time analysis of intersection of Brownian paths in the plane. Ann. Probab. 12:1 (1984), 86-107. Math. Review number not available.
  12. J. Ginibre. Some Applications of functional integration in Statistical Mechanics and Field Theory. C. de Witt (ed.) and R. Storaeds (ed.),Gordon and BreachNew York (1971) 327--427. Math. Review number not available.
  13. E.H. Lieb, R. Seiringer and J. Yngvason. Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61 (2000), 043602-1-13. Math. Review number not available.
  14. E.H. Lieb, R. Seiringer and J. Yngvason. A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys. 224 (2001), 17-31. Math. Review 1868990 (2003a:82008)
  15. E.H. Lieb and R. Seiringer. Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88:17 (2002), 170409-1-4. Math. Review number not available.
  16. E.H. Lieb, R. Seiringer, J. Yngvason and J.P. Solovej. The mathematics of the Bose gas and its condensation . Birkhäuser Verlag Basel (2005). Go MR2143817 (2006e:82001)
  17. E.H. Lieb and J. Yngvason. The Ground State Energy of a Dilute Two-dimensional Bose Gas. J.~Stat.~Phys. 103 (2001), 509-526. MR1827922 (2002c:82009)
  18. L. Pitaevskii and S. Stringari. Bose-Einstein Condensation. Clarendon Press, Oxford (2003). MR2012737 (2004i:82038)
  19. R. Seiringer. The thermodynamic pressure of a dilute Fermi gas. Comm. Math. Phys. 261 (2006), 729-758. Math. Review number not available.
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489