Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 4 (1999) > Paper 7 open journal systems 


Weak Convergence for the Row Sums of a Triangular Array of Empirical Processes Indexed by a Manageable Triangular Array of Functions

Miguel A. Arcones, State University of New York


Abstract
We study the weak convergence for the row sums of a general triangular array of empirical processes indexed by a manageable class of functions converging to an arbitrary limit. As particular cases, we consider random series processes and normalized sums of i.i.d. random processes with Gaussian and stable limits. An application to linear regression is presented. In this application, the limit of the row sum of a triangular array of empirical process is the mixture of a Gaussian process with a random series process.


Full text: PDF

Pages: 1-17

Published on: April 23, 1999


Bibliography
  1. Alexander, K. S. (1987a). Central limit theorems for stochastic processes under random entropy conditions. Probab. Theor. Rel. Fields 75, 351-378. Math. Review 88h:60069
  2. Alexander, K. S. (1987b). The central limit theorem for empirical processes on Vapnik-Cervonenkis classes. Ann. Probab. 15, 178-203. Math. Review 88f:60036
  3. Arcones, M. A. (1994). Weak convergence of the row sums of a triangular array of empirical processes Distributional convergence of M-estimators under unusual rates. Statist. Probab. Lett. 21 , 271-280. Math. Review 96a:62017
  4. Arcones, M. A. (1996). M-estimators converging to a stable limit. Preprint. Math. Review number not available.
  5. Arcones, M. A. (1998). Weak convergence of the row sums of a triangular array of empirical processes. High Dimensional Probability. Progress in Probability 43, 1-25. Birkhäuser-Verlag, Basel. Math. Review number not available.
  6. Arcones, M. A., Gaenssler, E. P. and Ziegler, K. (1992). Partial-sum processes with random locations and indexed by Vapnik-Cervonenkis classes of sets in arbitrary sample space. Probability in Banach Spaces, 8, 379-389. Birkhäuser, Boston. Math. Review 94k:60005
  7. Draper, N. R. and Smith, H. (1981). Applied Regression Analysis. Wiley, New York. Math. Review 82f:62002
  8. Dudley, R. M. (1978). Central limit theorem for empirical measures. Ann. Probab. 6, 899-929. Math. Review 81k:60029a
  9. Dudley, R. M. (1984). A course on empirical processes. Lect. Notes in Math. 1097, 1-142. Springer-Verlag, New York, Math. Review 88e:60029
  10. Gaenssler, P. (1994). On recent developments in the theory of set-indexed processes. Asymptotic Statistics (Prague, 1993). 87-109. Contributions to Statistics, Physica, Heidelberg. Math. Review 95j:60002
  11. Gaenssler, P. and Ziegler, K. (1994). A uniform law of large numbers for set-indexed processes with applications to empirical and partial-sum processes. Probability in Banach Spaces 9, (Sandjberg, 1993) 385-400, Birkhäuser Boston, Boston, MA. Math. Review 95k:60058
  12. Giné, E. and Zinn, J. (1984). Some limit theorems for empirical processes. Ann. Probab. 12, 929-989. Math. Review 86f:60028
  13. Giné, E. and Zinn, J. (1986). Lectures on the central limit theorem for empirical processes. Lect. Notes in Math 1221, 50-112. Springer-Verlag, New York. Math. Review 88i:60063
  14. Gnedenko, B. V. and Kolmogorov, A. N. (1968). Limit Distributions for Sums of Independent Random Variables. Addison-Wesley Publishing Company. Reading, Massachusetts. Math. Review 38 #1722
  15. Hoffmann-Jørgensen, J. (1991). Stochastic Processes on Polish Spaces. Various Publications Series, 39. Aarhus University, Matematisk Institut, Aarhus, Denmark. Math. Review 95a:60047
  16. Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18, 191-219. Math. Review 91f:62059
  17. Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York. Math. Review 88a:62004
  18. Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer-Verlag, New York. Math. Review 93c:60001
  19. Marcus, M. B. and Pisier, G. (1981). Random Fourier Series with Applications to Harmonic Analysis. Ann. Math. Studies 10. Princeton University Press, Princeton, New Jersey. Math. Review 83b:60031
  20. Pollard, D. (1984). Convergence of Stochastic Processes. Springer-Verlag, New York. Math. Review 86i:60074
  21. Pollard, D. (1990). Empirical Processes: Theory and Applications. NSF-CBMS Regional Conference Series in Probab. and Statist., Vol. 2. Institute of Mathematical Statistics, Hayward, California. Math. Review 93e:60046
  22. Portnoy, S. and Koenker, R. (1997). The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators. Statist. Science 12, 279-300. Math. Review 98m:62195
  23. Romo, J. A. (1993). Stable limits for empirical processes on Vapnik-Cervonenkis classes of functions. J. Mult. Anal. 45, 73-88. Math. Review 94j:60069
  24. Vapnik, V.N. and Cervonenkis, A. Ja. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 164-280. Math. Review 46 #1010
  25. Vapnik, V.N. and Cervonenkis. A. Ja. (1981). Necessary and sufficient conditions for the convergence of means to their expectation. Theory Prob. Appl. 26, 532-553. Math. Review 83d:60031
  26. van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and Empirical Processes with Applications to Statistics. Springer-Verlag, New York. Math. Review 97g:60035
  27. Ziegler, K. (1997). Functional central limit theorems for triangular arrays of function-indexed processes under uniformly integrable entropy conditions J. Mult. Anal. 62, 233-272. Math. Review 98j:60051
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489