![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Correlation lengths for random polymer models and for some renewal sequences
|
Fabio Lucio Toninelli, ENS LYON |
Abstract
We consider models of directed polymers interacting with a
one-dimensional defect line on which random charges are placed.
More abstractly, one starts from renewal sequence on Z and gives
a random (site-dependent) reward or penalty to the occurrence of a
renewal at any given point of Z. These models are known
to undergo a delocalization-localization transition, and the free
energy F vanishes when the critical point is approached from the
localized region. We prove that the quenched correlation length
ξ, defined as the inverse of the rate of exponential decay of
the two-point function, does not diverge faster than 1/F. We
prove also an exponentially decaying upper bound for the
disorder-averaged two-point function, with a good control of the
sub-exponential prefactor. We discuss how, in the particular case
where disorder is absent, this result can be seen as a refinement of
the classical renewal theorem, for a specific class of renewal
sequences.
|
Full text: PDF
Pages: 613-636
Published on: May 13, 2007
|
Bibliography
- Albeverio, Sergio; Zhou, Xian Yin. Free energy and some sample path properties of a random walk with random potential. J. Statist. Phys. 83 (1996), no. 3-4, 573--622.
Math. Review 97c:82027
-
Alexander, Kenneth S.
The Effect of Disorder on Polymer Depinning Transitions, math.PR/0610008.
Math. Review number not available.
-
Alexander, Kenneth S.; Sidoravicius, Vladas.
Pinning of polymers and interfaces by random potentials. Ann.
Appl. Probab. 16 (2006), 636-669.
Math. Review number not available.
-
Asmussen, Soren. Applied probability and queues. Second edition. Applications of Mathematics (New York), 51. Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2003. xii+438 pp. ISBN: 0-387-00211-1
Math. Review 2004f:60001
-
Berenhaut, Kenneth S.; Lund, Robert. Renewal convergence rates for DHR and NWU lifetimes. Probab. Engrg. Inform. Sci. 16 (2002), no. 1, 67--84.
Math. Review 2002k:60181
-
Biskup, Marek; den Hollander, Frank. A heteropolymer near a linear interface. Ann. Appl. Probab. 9 (1999), no. 3, 668--687.
Math. Review 2001f:60107
-
A. Erdelyi, W. Magnus, F. Oberhettinger,
F. G. Tricomi. Higher
transcendental functions. vol. II, McGraw-Hill, New York, 1953.
Math. Review number not available.
-
Fortuin, C. M.; Kasteleyn, P. W.; Ginibre, J. Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 (1971), 89--103.
Math. Review 46 #8607
-
Giacomin, Giambattista. Random polymer models. Imperial
College Press, World Scientific, London 2007. Math. Review number not available.
-
Giacomin, Giambattista. Renewal convergence rates and correlation
decay for homogeneous pinning models, preprint (2007). Math. Review number not available.
-
Giacomin, Giambattista; Toninelli, Fabio Lucio. The localized phase of disordered copolymers with adsorption. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 149--180 (electronic).
Math. Review 2007f:82044
-
Giacomin, Giambattista; Toninelli, Fabio Lucio. Estimates on path delocalization for copolymers at selective interfaces. Probab. Theory Related Fields 133 (2005), no. 4, 464--482.
Math. Review 2006m:60137
-
Ismail, Mourad E. H.; May, C. Ping. Special functions, infinite divisibility and transcendental equations. Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 3, 453--464.
Math. Review 80d:33005
-
Kent, John. Some probabilistic properties of Bessel functions. Ann. Probab. 6 (1978), no. 5, 760--770.
Math. Review 58 #18750
-
Laroche, Etienne. Inégalités de corrélation sur {-1,1}^n et dans R^n (French) [Correlation inequalities on {-1,1}^n and in R^n] Ann. Inst. H. Poincaré Probab. Statist. 29 (1993), no. 4, 531--567.
Math. Review 94k:82015
-
Lund, Robert B.; Tweedie, Richard L. Geometric convergence rates for stochastically ordered Markov chains. Math. Oper. Res. 21 (1996), no. 1, 182--194.
Math. Review 98d:60127
-
Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1991. x+533 pp. ISBN: 3-540-52167-4.
Math. Review 92d:60053
-
Ney, Peter. A refinement of the coupling method in renewal theory. Stochastic Process. Appl. 11 (1981), no. 1, 11--26.
Math. Review 82d:60169
-
Toninelli, Fabio Lucio.
Critical properties and finite-size estimates for the depinning
transition of directed random polymers.
J. Statist. Phys. 126 (2007), 1025-1044. Math. Review number not available.
-
Widder, David Vernon. The Laplace Transform. Princeton Mathematical Series, v. 6. Princeton University Press, Princeton, N. J., 1941. x+406 pp.
Math. Review 3,232d
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|