|
|
|
| | | | | |
|
|
|
|
|
Sectorial Local Non-Determinism and the Geometry of the Brownian Sheet
|
Yimin Xiao, Michigan State University Davar Khoshnevisan, The University of Utah Dongsheng Wu, Michigan State University |
Abstract
We prove the following results about the
images and multiple points of an N-parameter,
d-dimensional Brownian sheet B ={B(t)}t in R+N:
- (1)
If dim F ≤ d/2, then B(F)
is almost surely a Salem set.
- (2)
If N ≤ d/2, then with probability one
dim B(F) = 2 dim F for all Borel sets of R+N,
where ``dim'' could be everywhere
replaced by the ``Hausdorff,''
``packing,'' ``upper Minkowski,'' or ``lower Minkowski
dimension.''
- (3)
Let Mk be the set of k-multiple points of
B. If N ≤ d/2 and
Nk > (k-1)d/2, then dimh Mk =
dimp Mk = 2 Nk - (k-1)d a.s.
The Hausdorff dimension aspect of (2) was proved
earlier; see Mountford (1989) and Lin (1999).
The latter references use two different methods; ours
of (2) are more elementary, and reminiscent of the
earlier arguments of Monrad and Pitt
(1987) that were designed for studying fractional Brownian motion.
If N>d/2 then(2)
fails to hold. In that case,
we establish uniform-dimensional properties
for the (N,1)-Brownian sheet that extend the results of
Kaufman (1989) for 1-dimensional Brownian motion.
Our innovation is in our use of the
sectorial local nondeterminism
of the Brownian sheet (Khoshnevisan and Xiao, 2004).
|
Full text: PDF
Pages: 817-843
Published on: September 19, 2006
|
Bibliography
- Adler, Robert J. The geometry of random fields.
John Wiley & Sons, Ltd., Chichester, 1981. xi+280 pp. ISBN: 0-471-27844-0 MR0611857 (82h:60103)
- Chen, Xiong. Hausdorff dimension of multiple points of the $(N,d)$ Wiener
Indiana Univ. Math. J. 43 (1994), no. 1, 55--60. MR1275452 (95b:60100)
- Ehm, W. Sample function properties of multiparameter stable processes.
Z. Wahrsch. Verw. Gebiete 56 (1981), no. 2, 195--228. MR0618272 (82g:60096)
- Falconer, Kenneth. Fractal geometry.
John Wiley & Sons, Ltd., Chichester, 1990. xxii+288 pp. ISBN: 0-471-92287-0 MR1102677 (92j:28008)
- Falconer, K. J.; Howroyd, J. D. Packing dimensions of projections and dimension profiles.
Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 2, 269--286. MR1426523 (98j:28004)
- Geman, Donald; Horowitz, Joseph. Occupation densities.
Ann. Probab. 8 (1980), no. 1, 1--67. MR0556414 (81b:60076)
- Kahane, Jean-Pierre. Some random series of functions.
Cambridge Studies in Advanced Mathematics, 5. Cambridge University Press, Cambridge, 1985. xiv+305 pp. ISBN: 0-521-24966-X; 0-521-45602-9 MR0833073 (87m:60119)
- Kahane, Jean-Pierre. Ensembles aléatoires et dimensions.
65--121, North-Holland Math. Stud., 111, North-Holland, Amsterdam, 1985. MR0848143 (87k:60110)
- Kahane, J.-P. Fractals and random measures.
Bull. Sci. Math. 117 (1993), no. 1, 153--159. MR1205416 (94d:28009)
- Kahane, Jean-Pierre; Salem, Raphaël. Ensembles parfaits et séries trigonométriques.
Hermann, Paris, 1994. 245 pp. ISBN: 2-7056-6193-X MR1303593 (96e:42001)
- Kaufman, Robert. Une propriété métrique du mouvement brownien.
(French) C. R. Acad. Sci. Paris Sér. A-B 268 1969 A727--A728. MR0240874 (39 #2219)
- Kaufman, Robert. Dimensional properties of one-dimensional Brownian motion.
Ann. Probab. 17 (1989), no. 1, 189--193. MR0972780 (91b:60063)
- Khoshnevisan, Davar. Brownian sheet images and Bessel-Riesz capacity.
Trans. Amer. Math. Soc. 351 (1999), no. 7, 2607--2622. MR1638246 (2000e:60123)
- Khoshnevisan, Davar. Multiparameter processes.
Springer Monographs in Mathematics. Springer-Verlag, New York, 2002. xx+584 pp. ISBN: 0-387-95459-7 MR1914748 (2004a:60003)
- Khoshnevisan, Davar; Shi, Zhan. Brownian sheet and capacity.
Ann. Probab. 27 (1999), no. 3, 1135--1159. MR1733143 (2002f:60150)
- Khoshnevisan, Davar; Xiao, Yimin. Additive Lévy processes: capacity and Hausdorff dimension.
151--170, Progr. Probab., 57, Birkhäuser, Basel, 2004. MR2087138 (2005j:60080)
- Le Gall, J.-F. The exact Hausdorff measure of Brownian multiple points.
107--137, Progr. Probab. Statist., 13, Birkhäuser Boston, Boston, MA, 1987. MR0902429 (89a:60188)
- Le Gall, Jean-François. The exact Hausdorff measure of Brownian multiple points. II.
193--197, Progr. Probab., 17, Birkhäuser Boston, Boston, MA, 1989. MR0990482 (90f:60139)
- Lin, Huonan. Uniform dimension results of multi-parameter stable processes.
Sci. China Ser. A 42 (1999), no. 9, 932--944. MR1736584 (2000k:60103)
- Monrad, Ditlev; Pitt, Loren D. Local nondeterminism and Hausdorff dimension.
163--189, Progr. Probab. Statist., 13, Birkhäuser Boston, Boston, MA, 1987. MR0902433 (89d:60077)
- Mountford, T. S. A relation between Hausdorff dimension and a condition on time sets for
Bull. London Math. Soc. 21 (1989), no. 2, 179--185. MR0976063 (89m:60094)
- Mountford, T. S. Uniform dimension results for the Brownian sheet.
Ann. Probab. 17 (1989), no. 4, 1454--1462. MR1048937 (91e:60123)
- Orey, Steven; Pruitt, William E. Sample functions of the $N$-parameter Wiener process.
Ann. Probability 1 (1973), no. 1, 138--163. MR0346925 (49 #11646)
- Pitt, Loren D. Local times for Gaussian vector fields.
Indiana Univ. Math. J. 27 (1978), no. 2, 309--330. MR0471055 (57 #10796)
- Rosen, Jay. Self-intersections of random fields.
Ann. Probab. 12 (1984), no. 1, 108--119. MR0723732 (85i:60052)
- Talagrand, Michel; Xiao, Yimin. Fractional Brownian motion and packing dimension.
J. Theoret. Probab. 9 (1996), no. 3, 579--593. MR1400588 (98f:60159)
- Taylor, S. James; Tricot, Claude. Packing measure, and its evaluation for a Brownian path.
Trans. Amer. Math. Soc. 288 (1985), no. 2, 679--699. MR0776398 (87a:28002)
- Xiao, Yimin. Packing dimension of the image of fractional Brownian motion.
Statist. Probab. Lett. 33 (1997), no. 4, 379--387. MR1458008 (98g:60080)
- Xiao, Yimin. Random fractals and Markov processes.
261--338, Proc. Sympos. Pure Math., 72, Part 2, Amer. Math. Soc., Providence, RI, 2004. MR2112126 (2006a:60065)
- Zygmund, A. Trigonometric series. 2nd ed. Vols. I, II.
Cambridge University Press, New York 1959 Vol. I. xii+383 pp.; Vol. II. vii+354 pp. MR0107776 (21 #6498)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|