Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 6 (2001) > Paper 6 open journal systems 


Strict Inequality for Phase Transition between Ferromagnetic and Frustrated Systems

Emilio De Santis, University of Roma "La Sapienza"


Abstract
We consider deterministic and disordered frustrated systems in which we can show some strict inequalities with respect to related ferromagnetic systems. A case particularly interesting is the Edwards-Anderson spin-glass model in which it is possible to determine a region of uniqueness of the Gibbs measure, which is strictly larger than the region of uniqueness for the related ferromagnetic system. We analyze also deterministic systems with |JB |  in   [JA, JB], where 0< JA le JB < infty , for which we prove strict inequality for the critical points of the related FK model. The results are obtained for the Ising models but some extensions to Potts models are possible.


Full text: PDF

Pages: 1-27

Published on: February 7, 2001


Bibliography
  1. M. Aizenman, J. Chayes, L. Chayes, C.M. Newman, (1988), Discontinuity of the magnetization in one-dimensional 1 / |x-y|^2 Ising and Potts models, J. Statis. Phys. 50, 1-40. Math. Review 2001c:60151
  2. M. Aizenman, G. Grimmett, (1991), Strict monotonicity for critical points in percolation and ferromagnetic models, J. Statis. Phys. 168, 39-55. Math. Review 92i:82060
  3. C. Bezuidenhout, G. Grimmett, H. Kesten, (1993), Strict monotonicity for critical values of Potts models and random cluster processes, Comm. Math. Phys. 158, 1-16. Math. Review 94j:82040
  4. J. Bricmont, A. Kupiainen, (1988), Phase transition in 3d random field Ising model, Comm. Math. Phys. 116, 539-572. Math. Review 89h:82007
  5. M. Campanino, (1998), Strict inequality for critical percolation values in frustreted random cluster models, Markov Processes and Related Fields, 4, 395-410. Math. Review 2000b:60235
  6. E. De Santis, (1998), Strict inequality in phase transition between ferromagnetic and frustreted systems, Ph.D. thesis, Rome. Math. Review number not available.
  7. E. De Santis, A. Gandolfi, (1999), Bond percolation in frustrated systems, Ann. Probab. 27, 1781-1808. Math. Review 2000k:60199
  8. R. Diestel, (1997), Graph Theory, Springer-Verlag. Math. Review 1 448 665
  9. S. Edwards, P. Anderson, (1975), Theory of spin glasses, J. Phys. F, 5, 965-974.
  10. G. Edwards, A. Sokal, (1988), Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D, 38, 2009-2012. Math. Review 89i:82003
  11. C. Fortuin, P. Kasteleyn, J. Ginibre, (1971), Correlation inequality on some partially ordered sets, Comm. Math. Phy. 22, 89-103. Math. Review 46 #8607
  12. C. Fortuin, P. Kasteleyn, (1972), On the random cluster model. I. Introduction and relation to other models, Physica, 57, 536-564. Math. Review 50 #12107
  13. C. Fortuin, (1972), On the random cluster model. II. The percolation model, Physica, 58, 393-418.
  14. C. Fortuin, (1972), On the random cluster model. III. The simple random-cluster process, Physica, 59, 545-570.
  15. A. Gandolfi, (1998), Inequalities for critical points in disordered ferromagnets Preprint
  16. A. Gandolfi, M. Keane, C. Newman, (1992), Uniqueness of the infinite component in a random graph with applications to percolation and spin glass, Probab. Theory Related Fields, 92, 511-527. Math. Review 93f:60149
  17. G. Grimmett, (1994), Potts models and random-cluster processes with many-body interactions, J. Stat. Phys. 75, 67-121 Math. Review 96a:60079
  18. G. Grimmett, (1995), The stochastic random-cluster process and the uniqueness of random-cluster measures, Ann. Prob. 23, 1461-1510. Math. Review 97b:60169
  19. G. Grimmett, (1999), Inequalities and entanglements for percolation and random-cluster models, Perplexing Problems In Probability, Progr. Probab. 44, 91-105. Math. Review 2000i:60115
  20. E. Ising, (1925), Beitrag zur Theorie des Ferromagnetismus, Z. Phys 31, 253-258.
  21. P. Kasteleyn, C. Fortuin, (1969), Phase transitions in lattice systems with random local properties, Phys. Soc. Japan 26 (Suppl.), 11-14.
  22. J. Lebowitz and A. Martin-Lof, (1972), On the uniqueness of the equilibrium state for Ising systems, Comm. Math. Phy. 25, 276-282. Math. Review 47 #1409
  23. T. Liggett, (1985), Interacting Particle Systems, Springer-Verlag, Berlin, Math. Review 86e:60089
  24. T. Lindvall, (1985), Lecture on the coupling Method, Series in Probability and Mathematical Statistics Math. Review 94c:60002
  25. C. Newman, (1994), Disordered Ising system and random cluster representation, In Probability and Phase Transition, G. Grimmett (ed.), Kluwer, Dordrecht, 247-260. Math. Review 95h:82016
  26. C. Newman, (1997), Topics in Disordered Systems, Lectures in Mathematics, Birkhauser, ETH Zurich, 247-260. Math. Review 99e:82052
  27. E. Olivieri, J.F. Perez, S. Goulart Rosa Jr., (1983), Some rigorous results on the phase diagram of the dilute Ising model, Phys. lett. 94A, 309-311.
  28. V. Strassen, (1965), The existence of probability measures with given marginals, Ann. Math. Statist. 36, 423-439. Math. Review 31 #1693
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489