![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Metastability Threshold for Modified Bootstrap Percolation in d Dimensions
|
Alexander E Holroyd, Department of Mathematics, University of British Columbia |
Abstract
In the modified bootstrap percolation model, sites in the cube
{1,...,L}d are initially declared active independently with
probability p. At subsequent steps, an inactive site becomes active
if it has at least one active nearest neighbour in each of the d
dimensions, while an active site remains active forever. We study the
probability that the entire cube is eventually active. For all d ≥ 2
we prove that as L -> ∞ and p -> 0 simultaneously, this
probability converges to 1 if L ≥ exp...exp [(λ+ε)/p], and
converges to 0 if L ≤ exp...exp [(λ-ε)/p], for any ε
> 0. Here the exponential function is iterated d-1 times, and the
threshold λ equals π2/6 for all d.
|
Full text: PDF
Pages: 418-433
Published on: June 6, 2006
|
Bibliography
-
Adler J.; Stauffer, D.; Aharony, A.
Comparison of bootstrap percolation models.
J. Phys. A 22 (1989), L297--L301.
- Aizenman, M.; Lebowitz, J. L. Metastability effects in bootstrap percolation.
J. Phys. A 21 (1988), no. 19, 3801--3813. MR0968311 (90e:82047)
- Balogh, J.; Bollobas, B.
Sharp thresholds in bootstrap percolation.
Physica A, 326 (2003), 305--312.
- Cerf, Raphaël; Cirillo, Emilio N. M. Finite size scaling in three-dimensional bootstrap percolation.
Ann. Probab. 27 (1999), no. 4, 1837--1850. MR1742890 (2001b:82047)
- Cerf, R.; Manzo, F.. The threshold regime of finite volume bootstrap percolation.
Stochastic Process. Appl. 101 (2002), no. 1, 69--82. MR1921442 (2003e:60217)
- Gregorio, P. D.; Lawlor, A.; Bradley, P.; Dawson, K. A.
Clarification of the bootstrap percolation paradox.
Phys. Rev. Lett., 93 (2004), no. 2, 025501
- Grimmett, Geoffrey. Percolation.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339 (2001a:60114)
- Holroyd, Alexander E. Sharp metastability threshold for two-dimensional bootstrap percolation.
Probab. Theory Related Fields 125 (2003), no. 2, 195--224. MR1961342 (2003k:60257)
- Holroyd, Alexander E.; Liggett, Thomas M.; Romik, Dan. Integrals, partitions, and cellular automata.
Trans. Amer. Math. Soc. 356 (2004), no. 8, 3349--3368 (electronic). MR2052953 (2005b:60018)
- Schonmann, Roberto H. On the behavior of some cellular automata related to bootstrap percolation.
Ann. Probab. 20 (1992), no. 1, 174--193. MR1143417 (93b:60231)
- van Enter, Aernout C. D. Proof of Straley's argument for bootstrap percolation.
J. Statist. Phys. 48 (1987), no. 3-4, 943--945. MR0914911 (88j:82024)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|