![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Principle of Large Deviations for Martingale Additive Functionals of Recurrent Markov Processes
|
Matthias K. Heck, HypoVereinsbank Faïza Maaouia, HypoVereinsbank |
Abstract
We give a principle of large deviations for a generalized version of the
strong central limit theorem. This generalized version deals with
martingale additive functionals of a recurrent Markov process.
|
Full text: PDF
Pages: 1-26
Published on: March 2, 2001
|
Bibliography
- G. A. BROSAMLER (1988). An almost everywhere central limit theorem,
Math. Proc. Cambridge Philos. , 104, 561-574
Math. Review 89i:60045
- G. A. BROSAMLER (1990). A simultaneous almost everywhere
central limit theorem, for diffusions and its application to
path energy and eigenvalues of the Laplacian,
Illinois J. Math., 34 526-556
Math. Review 91i:60189
- I.BERKES and H. DEHLING (1993). Some limit theorems in log density,
Ann. Probab. Vol. 23, No. 3, 1640-1670
Math. Review 94h:60026
- F. CHAABANE F. MAAOUIA and A. TOUATI (1998). Généralisation
du théorème de la limite centrale presque-sûre
pour les martingales vectorielles,
C. R. Acad. Sci. Paris,
T 326, Série I, 229-232.
Math. Review 99i:60061
- F. CHAABANE (2001). Invariance principles with logarithmic
averaging for martingales, To appear in
Studia Math. Sci. Hungar.
Math. Review number not available.
- M. CSÖRGÖ, L. HORVÁTH (1992). Invariance
principles for logarithmic averages,
Proc. Camb. Phil. Soc., 112-195.
Math. Review 93e:60057
- D. DACUNHA-CASTELLE and M. DUFLO (1983). Probabililés
et statistiques (2. Problèmes à temps mobiles),
Masson, (1983).
Math. Review 85k:60001
- J. D. DEUSCHEL and D. W. STROOCK (1989). Large deviations,
Academic Press.
Math. Review 90h:60026
- M. D. DONSKER (1951). An invariance principle for certain
probability limit theorems,
Mem. Amer. Math. Soc. 6,
Math. Review 12,723a
- M. DUFLO (1997). Random iterative models, Masson
Math. Review 98m:62239
- D. FREEDMAN (1983). Brownian motion and diffusion,
Springer, New York, Second edition
Math. Review 84c:60121
- P. HALL and C. C. HEYDE (1980). Martingale limit theory
and its application. Probability and Mathematical Statistics,
Academic Press
Math. Review 83a:60001
- M. K. HECK (1995). Das Prinzip der gzo(beta )en
Abweichungen fur fas sicheren Zentralen Grenzwertsatz und
fur seine funktionale Verallgemeinerung,
Dissertation, Saarbrucken, Germany
Math. Review number not avilable
- M. K. HECK (1998). The principle of large deviations for
the almost everywhere central limit theorem.
Stoch, Process Appl. 76, No 1, 61-75.
Math. Review 99f:60059
- M. K. HECK (1999). Principle of large deviations for
the empirical processes of Ornstein-Uhlenbeck Process,
J. Theoret. Probab. 12, No 1, 147-179.
Math. Review 2000f:60042
- J. T. HULL (1997). Options, futures, and other deviatives
Prentice-Hall, Upper Saddle River,
Math. Review number not available
- M. T. LACEY and W. PHILLIP (1990). A note on the
almost sure central limit theorem, Statist. Probab. Let.
9, 201-205.
Math. Review 91e:60100
- M. A. LIFSHITS and E. S. STANKEVICH (2001).
On the Large Deviation Principle for the Almost Sure CLT,
Preprint Université de Lille, France.
Math. Review number not available
- F. MAAOUIA (1987). Comportements asymptotiques des
fonctionnelles additives des processus de Markov
récurrents au sens de Harris,
Thèse de 3ème cycle,
Université de Paris VII.
Math. Review number not available
- F. MAAOUIA (1996). Versions fortes du
théorème de la limite centrale pour
les processus de Markov,
C. R. Acad. Sci. Paris,
T 323, Série I, 293-296.
Math. Review 97c:60182
- F. MAAOUIA (2001). Principes d'invariance par moyennisation
logarithmique pour les processus de Markov,
To appear in The Annals of Probability.
Math. Review number not available
- P. MARCH and T. SEPPALAINEN (1997). Large deviations
from the almost everywhere central limit theorem,
J. Theor. Probab. 10, 935-965.
Math. Review 98m:60040
- S. P. MEYN and R. L. TWEEDIE (1993).
Markov Chains and Stochastic Stability,
Springer.
Math. Review 98m:60040
- E. NUMMELIN (1983).
General irreducible Markov chains and negative operators,
Cambridge University Press.
Math. Review 90k:60131
- E. NUMMELIN and R. L. TWEEDIE (1978).
Geometric ergodicity and R-positivity for general Markov chains,
Ann. of Probab. Vol. 6, 404-420.
Math. Review 57 #7773
- B. RODZIK and Z. RYCHLIK (1994).
An almost sure central limit theorem for independent random
variables, Ann. IHP Vol. 30, No. 1, 1-11.
Math. Review 95c:60029
- P. SCHATTE (1988).
On strong versions of the central limit theorem,
Math. Nachr. 137, 249-256.
Math. Review 89g:60114
- A. TOUATI (1990).
Loi fonctionnelle du logarithme itéré
pour des processus de Markov récurrents,
Ann. Prob. Vol. 18, No. 1, 140-159.
Math. Review 92a:60094
- A. TOUATI (1995).
Sur les versions fortes du théoerème de la limite centrale,
Preprint Université de Marne-La-Vallée,
No 23. Math. Review numbernot available
- S. R. S. VARADHAN (1984).
Large deviations and applications,
SIAM, Philadelphia, (1984).
Math. Review 86h:60067b
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|