|
|
|
| | | | | |
|
|
|
|
|
Examples of Condition $(T)$ for Diffusions in a Random Environment
|
Abstract
With the help of the methods developed in our previous article [Schmitz, to appear in Annales de l'I.H.P., in press], we highlight condition $(T)$ as a source of new examples of 'ballistic' diffusions in a random environment when d>1 ('ballistic' means that a strong law of large numbers with non-vanishing limiting velocity holds).
In particular we are able to treat the case of non-constant diffusion coefficients,
a feature that causes problems.
Further we
recover the ballistic character of two important classes of diffusions in a random environment
by simply checking condition $(T)$.
This not only points out to the broad range of examples where condition $(T)$ can
be checked, but
also fortifies our belief that
condition $(T)$ is a natural contender for the characterisation of ballistic diffusions in a random environment when d>1.
|
Full text: PDF
Pages: 540-562
Published on: August 1, 2006
|
Bibliography
- Bass, Richard F. Diffusions and elliptic operators.
Probability and its Applications (New York). Springer-Verlag, New York, 1998. xiv+232 pp. ISBN: 0-387-98315-5 MR1483890 (99h:60136)
- Boboc, N.; Mustac tu a, P. Espaces harmoniques associés aux opérateurs différentiels
(French) Lecture Notes in Mathematics, No. 68 Springer-Verlag, Berlin-New York 1968 vi+95 pp. MR0241681 (39 #3020)
- Fannjiang, Albert; Komorowski, Tomasz. An invariance principle for diffusion in turbulence.
Ann. Probab. 27 (1999), no. 2, 751--781. MR1698963 (2001e:60069)
- Fannjiang, Albert; Papanicolaou, George. Diffusion in turbulence.
Probab. Theory Related Fields 105 (1996), no. 3, 279--334. MR1425865 (98d:60156)
- Friedman, Avner. Stochastic differential equations and applications. Vol. 1.
York-London, 1975. xiii+231 pp. MR0494490 (58 #13350a)
- Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of the Second Order, Springer Verlag, 1998.
- Il'in, A.M., Kalashnikov, A.S., Oleinik, O.A.: ``Linear equations of the second order of parabolic type'', Russian Math. Surveys, 17(3), page 1-143, 1962.
- Karatzas, Ioannis; Shreve, Steven E. Brownian motion and stochastic calculus.
Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991. xxiv+470 pp. ISBN: 0-387-97655-8 MR1121940 (92h:60127)
- Komorowski, Tomasz; Olla, Stefano. On homogenization of time-dependent random flows.
Probab. Theory Related Fields 121 (2001), no. 1, 98--116. MR1857110 (2002g:60047)
- Krylov, N. V. On one-point weak uniqueness for elliptic equations.
Comm. Partial Differential Equations 17 (1992), no. 11-12, 1759--1784. MR1194740 (93m:35057)
- Krylov, N. V. On weak uniqueness for some diffusions with discontinuous
Stochastic Process. Appl. 113 (2004), no. 1, 37--64. MR2078536 (2005e:60119)
- Landim, C.; Olla, S.; Yau, H. T.. Convection-diffusion equation with space-time ergodic random flow.
Probab. Theory Related Fields 112 (1998), no. 2, 203--220. MR1653837 (99j:35084)
- Nadirashvili, Nikolai. Nonuniqueness in the martingale problem and the Dirichlet problem for
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997), no. 3, 537--549. MR1612401 (99b:35042)
- Norris, J. R. Long-time behaviour of heat flow: global estimates and exact
Arch. Rational Mech. Anal. 140 (1997), no. 2, 161--195. MR1482931 (98k:35085)
- Oelschläger, Karl. Homogenization of a diffusion process in a divergence-free random
Ann. Probab. 16 (1988), no. 3, 1084--1126. MR0942757 (89i:60108)
- Olla, S.: ``Homogenization of diffusion processes in random fields'', Ecole Doctorale, Ecole Polytechnique, Palaiseau, 1994.
- Olla, S.: ``Central limit theorems for tagged particles and for diffusions in random environment''. In:
Milieux Alatoires, Panoramas et Synthses, Numro 12, Socit Mathmatique de France, 2001.
- Osada, Hirofumi. Homogenization of diffusion processes with random stationary
507--517, Lecture Notes in Math., 1021, Springer, Berlin, 1983. MR0736016 (85h:60118)
- Osada, Hirofumi. Diffusion processes with generators of generalized divergence
J. Math. Kyoto Univ. 27 (1987), no. 4, 597--619. MR0916761 (89b:60188)
- Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion.
of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7 MR1725357 (2000h:60050)
- Schmitz, T.: ``Diffusions in random environment and ballistic behavior'', accepted
for publication in Ann. I. H. Poincar'e PR, in press,
available at http://dx.doi.org/, with doi:10.1016/j.anihpb.2005.08.003.
- Shen, Lian. On ballistic diffusions in random environment.
Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 5, 839--876. MR1997215 (2005d:60130)
- Stroock, Daniel W.; Varadhan, S. R. Srinivasa. Multidimensional diffusion processes.
of Mathematical Sciences], 233. Springer-Verlag, Berlin-New York, 1979. xii+338 pp. ISBN: 3-540-90353-4 MR0532498 (81f:60108)
- Stroock, Daniel W. Diffusion semigroups corresponding to uniformly elliptic divergence
316--347, Lecture Notes in Math., 1321, Springer, Berlin, 1988. MR0960535 (90b:35071)
- Sturm, Karl-Theodor. Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for
Osaka J. Math. 32 (1995), no. 2, 275--312. MR1355744 (97b:35003)
- Sznitman, Alain-Sol. Slowdown estimates and central limit theorem for random walks in random
J. Eur. Math. Soc. (JEMS) 2 (2000), no. 2, 93--143. MR1763302 (2001j:60192)
- Sznitman, Alain-Sol. On a class of transient random walks in random environment.
Ann. Probab. 29 (2001), no. 2, 724--765. MR1849176 (2004b:60234)
- Sznitman, Alain-Sol. An effective criterion for ballistic behavior of random walks in random
Probab. Theory Related Fields 122 (2002), no. 4, 509--544. MR1902189 (2003c:60168)
- Sznitman, Alain-Sol. On new examples of ballistic random walks in random environment.
Ann. Probab. 31 (2003), no. 1, 285--322. MR1959794 (2004d:60263)
- Sznitman, Alain-Sol. Topics in random walks in random environment.
203--266 (electronic), ICTP Lect. Notes, XVII, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004. MR2198849
- Sznitman, Alain-Sol; Zerner, Martin. A law of large numbers for random walks in random environment.
Ann. Probab. 27 (1999), no. 4, 1851--1869. MR1742891 (2001f:60116)
- Sznitman, Alain-Sol; Zeitouni, Ofer. An invariance principle for isotropic diffusions in random
Invent. Math. 164 (2006), no. 3, 455--567. MR2221130
- Zeitouni, Ofer. Random walks in random environment.
189--312, Lecture Notes in Math., 1837, Springer, Berlin, 2004. MR2071631 (2006a:60201)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|