|
|
|
| | | | | |
|
|
|
|
|
Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions
|
Nicolas Champagnat, INRIA, France Sylvie Roelly, Potsdam University, Germany |
Abstract
A multitype Dawson-Watanabe process is conditioned, in subcritical
and critical cases, on non-extinction in the remote future. On every
finite time interval, its distribution is absolutely continuous
with respect to the law of the unconditioned
process. A martingale problem characterization is also given.
Several results on the long time behavior of the conditioned mass
process-the conditioned multitype Feller branching diffusion-are
then proved. The general case is first considered, where the
mutation matrix which models the interaction between the types, is
irreducible. Several two-type models with decomposable mutation
matrices are analyzed too.
|
Full text: PDF
Pages: 777-810
Published on: May 6, 2008
|
Bibliography
- Athreya, Krishna B.; Ney, Peter E. Branching processes.Die Grundlehren der mathematischen Wissenschaften, Band 196.Springer-Verlag, New York-Heidelberg, 1972. xi+287 pp. MR0373040 (51 #9242)
- Dawson, D.A. Limit theorems for interaction free geostochastic systems. Col. Math. Soc. Bolyai, 22--47 (1978).
- Dawson, Donald A. Measure-valued Markov processes. École d'Été de Probabilités de Saint-Flour XXI---1991, 1--260, Lecture Notes in Math., 1541, Springer, Berlin, 1993. MR1242575 (94m:60101)
- Dawson, D. A.; Gorostiza, L. G.; Wakolbinger, A. Hierarchical equilibria of branching populations. Electron. J. Probab. 9 (2004), no. 12, 316--381 (electronic). MR2080603 (2005i:60164)
- Dynkin, E.B. An introduction to Branching Measure-valued Processes, CRM Monographs 6, Amer. Math. Soc. Providence (1994).
- El Karoui, Nicole; Roelly, Sylvie. Propriétés de martingales, explosion et représentation de Lévy-Khintchine d'une classe de processus de branchement à valeurs mesures.(French) [Martingale properties, explosion and Levy-Khinchin representation of a class of measure-valued branching processes] Stochastic Process. Appl. 38 (1991), no. 2, 239--266. MR1119983 (92k:60194)
- Etheridge, Alison M. An introduction to superprocesses.University Lecture Series, 20. American Mathematical Society, Providence, RI, 2000. xii+187 pp. ISBN: 0-8218-2706-5 MR1779100 (2001m:60111)
- Etheridge, A. and Williams, D.R.E. A decomposition of the (1+beta)-superprocess conditioned on survival. Proceed. of the Royal Soc. of Edinburgh (2004)
- Evans, Steven N. Two representations of a conditioned superprocess. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), no. 5, 959--971. MR1249698 (95e:60082)
- Evans, Steven N.; Perkins, Edwin. Measure-valued Markov branching processes conditioned on nonextinction. Israel J. Math. 71 (1990), no. 3, 329--337. MR1088825 (92d:60089)
- Foster, J.; Ney, P. Decomposable critical multi-type branching processes. Sankhy=a Ser. A 38 (1976), no. 1, 28--37. MR0461690 (57 #1675)
- Foster, J. and Ney, P. Limit laws for decomposable critical branching processes. Z. Wahrsch. Verw. Gebiete 46, 13--43 (1978/1979).
- Frobenius, G. Uber Matrizen aus positiven Elementen Sitz. Ber. der Preussischen Akademie der Wissenschaft 456--477 (1912).
- Gantmacher, Felix R. Matrizentheorie.(German) [Matrix theory] With an appendix by V. B. Lidskij.With a preface by D. P. v Zelobenko.Translated from the second Russian edition by Helmut Boseck, Dietmar Soyka and Klaus Stengert.Springer-Verlag, Berlin, 1986. 654 pp. ISBN: 3-540-16582-7 MR0869996 (87k:15001)
- Gorostiza, Luis G.; López-Mimbela, Jose A. The multitype measure branching process. Adv. in Appl. Probab. 22 (1990), no. 1, 49--67. MR1039376 (91d:60205)
- Gorostiza, Luis G.; Roelly, Sylvie. Some properties of the multitype measure branching process. Stochastic Process. Appl. 37 (1991), no. 2, 259--274. MR1102873 (92e:60095)
- Jivrina, Miloslav. Branching processes with measure-valued states. 1964 Trans. Third Prague Conf. Information Theory, Statist. Decision Functions, Random Processes (Liblice, 1962) pp. 333--357 Publ. House Czech. Acad. Sci., Prague MR0168028 (29 #5293)
- Kawazu, Kiyoshi; Watanabe, Shinzo. Branching processes with immigration and related limit theorems. Teor. Verojatnost. i Primenen. 16 1971 34--51. MR0290475 (44 #7656)
- Lambert, Amaury. Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Probab. 12 (2007), no. 14, 420--446 (electronic). MR2299923 (2008b:60183)
- Lamperti, John; Ney, Peter. Conditioned branching processes and their limiting diffusions. Teor. Verojatnost. i Primenen. 13 1968 126--137. MR0228073 (37 #3657)
- Li, Zeng-Hu. Asymptotic behaviour of continuous time and state branching processes. J. Austral. Math. Soc. Ser. A 68 (2000), no. 1, 68--84. MR1727226 (2001e:60179)
- Meyer, Paul-André. Fonctionelles multiplicatives et additives de Markov.(French) Ann. Inst. Fourier (Grenoble) 12 1962 125--230. MR0140148 (25 #3570)
- Ogura, Y. Asymptotic behavior of multitype Galton-Watson processes. J. Math. Kyoto Univ. 15, 251--302 (1975).
- Overbeck, L. Conditioned super-Brownian motion. Probab. Theory Related Fields 96 (1993), no. 4, 545--570. MR1234623 (94j:60102)
- Perkins, Edwin. Dawson-Watanabe superprocesses and measure-valued diffusions. Lectures on probability theory and statistics (Saint-Flour, 1999), 125--324, Lecture Notes in Math., 1781, Springer, Berlin, 2002. MR1915445 (2003k:60104)
- Perko, Lawrence. Differential equations and dynamical systems.Texts in Applied Mathematics, 7. Springer-Verlag, New York, 1991. xii+403 pp. ISBN: 0-387-97443-1 MR1083151 (91m:34001)
- Perron, O. Uber Matrizen. Math. Annalen 64, 248--263 (1907)
- Roelly-Coppoletta, Sylvie; Rouault, Alain. Processus de Dawson-Watanabe conditionné par le futur lointain.(French) [A Dawson-Watanabe process conditioned by the remote future] C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 14, 867--872. MR1055211 (91d:60210)
- Seneta, E. Non-negative matrices and Markov chains.Revised reprint of the second (1981) edition [Springer-Verlag, New York; MR0719544].Springer Series in Statistics. Springer, New York, 2006. xvi+287 pp. ISBN: 978-0387-29765-1; 0-387-29765-0 MR2209438
- Sugitani, Sadao. On the limit distributions of decomposable Galton-Watson processes with the Perron-Frobenius root $1$. Osaka J. Math. 18 (1981), no. 1, 175--224. MR0609985 (82i:60138)
- Vatutin, V.A. and Sagitov, S.M. A decomposable critical branching processes with two types of particles. Proc. Steklov Inst. of Math. 4, 1--19 (1988)
- Watanabe, Shinzo. A limit theorem of branching processes and continuous state branching processes. J. Math. Kyoto Univ. 8 1968 141--167. MR0237008 (38 #5301)
- Zubkov, A. M. The limit behavior of decomposable critical branching processes with two types of particles.(Russian) Teor. Veroyatnost. i Primenen. 27 (1982), no. 2, 228--238. MR0657917 (84a:60111)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|