![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Hierarchical Equilibria of Branching Populations
|
Donald A. Dawson, Carleton University Luis G. Gorostiza, Centro de Investigacion y de Estudios Avanzados, Mexico D.F., Mexico Anton Wakolbinger, Goethe Universitat, Frankfurt am Main, Germany |
Abstract
Abstract. The objective of this paper is the study of the equilibrium behavior of a population on the hierarchical group $Omega_N$ consisting of families of individuals undergoing critical branching random walk and in addition these families also develop according to a critical branching process. Strong transience of the random walk guarantees existence of an equilibrium for this two-level branching system. In the limit $Ntoinfty$ (called the {em hierarchical mean field limit}), the equilibrium aggregated populations in a nested sequence of balls $B^{(N)}_ell$ of hierarchical radius $ell$ converge to a backward Markov chain on $mathbb{R_+}$. This limiting Markov chain can be explicitly represented in terms of a cascade of subordinators which in turn makes possible a description of the genealogy of the population.
|
Full text: PDF
Pages: 316-381
Published on: April 26, 2004
|
Bibliography
- K. B. Athreya and P. E.
Ney, Branching processes, Springer 1972. Math. Review link
- J. Bertoin and J.F. Le
Gall, The Bolthausen-Sznitman coalescent and the genealogy of
continuous-state branching processes. Probab. Theory and Related Fields
117 (2000), 249--266. Math. Review link
- D. A. Dawson, Measure-valued Markov Processes, in: Ecole d'Été
de Probabilit'es de Saint-Flour 1991,Lecture Notes in Mathematics 1541,
pp. 1-260, Springer 1993 Math. Review link
- D. A. Dawson, L. G.
Gorostiza and A.Wakolbinger, Occupation time fluctuations in branching
systems. J. Theor. Probab. 14 (2001), 729-796. Math. Review link
- D. A. Dawson, L. G.
Gorostiza and A. Wakolbinger, Degrees of transience and recurrence and
hierarchichal random walks. Preprint, 2003 (ArXiv math.PR/0401422, to
appear in Potential Analysis).
- D.A. Dawson, L.G. Gorostiza
and A. Wakolbinger, Hierarchical random walks, in ``Asymptotic Methods in
Stochastics'', Fields Institute Communications and Monograph Series, Amer.
Math. Soc. (to appear).
- D. A. Dawson and A. Greven,
Multiple time scale analysis of interacting diffusions. Probab. Theory
Related Fields 95 (1993), 467-508. Math. Review link
- D. A. Dawson and A. Greven,
Multiple space--time scale analysis for interacting branching models.
Electronic J. Probab. 1 (1996), paper no 14. Math. Review link
- D. A. Dawson and K. J.
Hochberg, A multilevel branching model. Adv. Appl. Prob. 23 (1991),
701-715.
Math. Review link
- D.Dawson, Y. Li and C.
Mueller, The support of measure-valued branching processes in a random
environment, Ann. Probab. 23 (1995), 1692-1718. Math. Review link
- D. A. Dawson and E.
Perkins, Historical Processes. Memoirs of the AMS 454 (1991). Math. Review link
- D.A. Dawson and X. Zheng,
Law of large numbers and central limit theorem for unbounded jump
mean-field models, Adv. in Applied Math. 12 (1991), 293-326. Math. Review link
- R. Durrett, The genealogy
of critical branching processes, Stochastic Process. Appl. 8 (1978),
101-116.
Math. Review link
- S. N. Ethier and T. G.
Kurtz, Markov Processes: Characterization and Convergence. Wiley, New York
1986
Math. Review link
- K. Fleischmann and R.
Siegmund-Schultze, The structure of reduced critical Galton-Watson
processes, Math. Nachr. 79 (1977) , 233-241. Math. Review link
- J. Geiger, Elementary new
proofs of classical limit theorems for Galton-Watson processes, J. Appl.
Prob. 36 (1999), 301-309. Math. Review link
- A. Greven, A phase
transition for the coupled branching process, I. The ergodic theory in the
range of finite second moments. Probab. Theory Related Fields, 87 (1991),
417-458.
Math. Review link
- A. Greven and K.J.
Hochberg, New Behavioral Patterns for Two-Level Branching Systems. In:
Stochastic Models, (L. G. Gorostiza and G. Ivanov, eds.), pp. 205-215, CMS
Conference Proceedings and Lecture Notes, Vol. 26, AMS 2000. Math. Review link
- L. Gorostiza, K. J.
Hochberg and A. Wakolbinger, Persistence of a critical super-2 process. J.
Appl. Probab. 32 (1995), 534-540. Math. Review link
- L. Gorostiza and A.
Wakolbinger, Persistence criteria for a class of critical branching
particle systems in continuous time. Ann. Probab. 19 (1995), 266-288.
Math.
Review link
- N. Ikeda and S. Watanabe,
Stochastic differential equations and diffusion processes, North Holland
1989. Math.
Review link
- O. Kallenberg, Random
Measures. 4th ed., Akademie-Verlag, Berlin and Academic Press, London,
1986.
Math. Review link
- O. Kallenberg, Foundations of
Modern Probability, 2nd ed., Springer, 2002. Math. Review link
- N. Konno and T. Shiga,
Stochastic partial differential equations for some measure-valued
diffusions. Probab. Th. Rel. Fields 79 (1988), 34-51. Math. Review link
- Z. Li and T. Shiga,
Measure-valued branching diffusions: immigrations, excursions and limit
theorems. J. Math. Kyoto Univ. 35 (1995), 233-274. Math. Review link
- A. Liemant, K. Matthes and
A. Wakolbinger, Equilibrium Distributions of Branching Processes, Akademie
Verlag, Berlin, and Kluwer Academic Publishers, Dordrecht, 1988. Math. Review link
- K. Matthes, J. Kerstan and
J. Mecke, Infinitely divisible point processes, Wiley, 1978. Math. Review link
- K. I. Sato and T. Watanabe.
Moments of last exit times for L'evy processes, Ann. Inst. H. Poincaré,
Probab. et Stat., to appear.
- S. Sawyer and J.
Felsenstein, Isolation by distance in a hierarchically clustered
population, J. Appl. Prob. 20 (1983), 1-10. Math. Review link
- EA. Stoeckl and A.
Wakolbinger, On clan-recurrence and -transience in time stationary
branching Brownian particle systems. In: Dawson, D.A. (ed.),
Measure-Valued Processes, Stochastic Partial Differential Equations, and
Interacting Systems, pp. 213 - 219, CMS Conference Proceedings and Lecture
Notes, Vol. 5, AMS 1994. Math. Review link
- Y. Wu, A multilevel birth-death
particle system and its continuous diffusion, Adv. Appl. Prob. 25(1993),
549-569.
Math. Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|