|  |  | 
	|  | |  |  |  |  | |  | 
	|  |  |  | 
	 | 
 
 
 
	| Sharp asymptotics for metastability in the random field Curie-Weiss model 
 
 |  
		 
			| Alessandra  Bianchi, Weierstrass Institute for Applied  Analysis and Stochastics (WIAS) Anton  Bovier, Institut für Angewandte Mathematik Rheinische Friedrich-Wilhelms-Universität
 Dmitry  Ioffe, William Davidson Faculty of Industrial Engineering and Management Technion
 
 |  
 
 
			 
				| Abstract In this paper we study the metastable behavior of one of the simplest disordered 
spin system, the random field Curie-Weiss model. 
We will show how the potential theoretic approach can be used to prove sharp estimates on capacities 
and metastable exit times also in the case when the distribution of 
the random field is continuous. 
Previous work was restricted to the case when the random field takes only finitely 
many values, which  allowed the reduction to a finite dimensional problem 
using lumping techniques. Here we produce the first genuine
sharp estimates in a context where entropy is important.
 
 
 
 |  
   | Full text: PDF 
 Pages: 1541-1603
 
 Published on: July 9, 2009
 
 
 
 |  
                         
                                | Bibliography 
 
J.M.G. Amaro de Matos, A.E. Patrick, V. A. Zagrebnov.
Random infinite-volume Gibbs states for the Curie-Weiss random field
Ising model. J. Statist. Phys. 
 66 (1992), no. 1-2, 139--164. 
Math. Review 92m:82009
K.A. Berman, M.~H. Konsowa. Random paths and cuts, electrical
networks, and reversible Markov chains.
SIAM J. Discrete Math.} 
3 (1990), no. 3, 311--319.
Math. Review 91g:94035
A. Bianchi, A. Bovier, D. Ioffe.
Pointwise estimates and exponential laws in metastability via coupling.
In preparation(2009).
 
A. Bovier. Metastability and ageing in stochastic dynamics.
Dynamics and randomness II, 17—79,
Nonlinear Phenom. Complex Systems, 10, 
Kluwer Acad. Publ., Dordrecht, 2004. 
Math. Review 2006h:60126
 
A. Bovier. Metastability. In Methods of contemporary mathematical
statistical physics, Lectures notes in Mathematics, Vol. 1970 
ed. R. Kotecký, Springer-Verlag, Berlin 2009, 177--223. Review number not available.
  
A. Bovier, M. Eckhoff, V. Gayrard, M. Klein. 
Metastability in stochastic dynamics of disordered mean-field models. 
Probab. Theory Related Fields 119 (2001), no. 1, 99--161.
Math. Review 2001k:82096
A. Bovier, M. Eckhoff, V. Gayrard, M. Klein. 
Metastability and low lying spectra in reversible Markov chains. 
Commun. Math. Phys. 228 (2002), no. 2, 219--255.
Math. Review 2004g:60102
A. Bovier, M. Eckhoff, V. Gayrard, M. Klein. 
Metastability in reversible diffusion  processes I. Sharp asymptotics for capacities and exit times. 
J. Europ. Math. Soc. (JEMS) 6 (2004), no. 4, 399--424.
Math. Review 2006b:82112
A. Bovier,  F. den Hollander, F. Nardi. 
Sharp asymptotics for Kawasaki dynamics on a finite box with open boundary.
 Probab. Theor. Rel. Fields.  135 (2006), no. 2, 265—310.
Math. Review 2007i:82054
A. Bovier, F. Manzo. 
Metastability in Glauber dynamics in the low-temperature limit: beyond exponential asymptotics. 
J. Stat. Phys. 107 (2002), no. 3-4, 757--779.
Math. Review 2003c:82052
P. Dai Pra, F. den Hollander. 
McKean-Vlasov limit for interacting random processes in random media. 
J. Statist. Phys. 84(1996), no. 3-4, 735--772.
Math. Review 97f:60208
R.L. Dobrushin, S. Shlosman. 
Large and moderate deviations in the Ising model.
Probability contributions to statistical mechanics, 91--219, 
Adv. Soviet Math., 20, 
Amer. Math. Soc., Providence, RI, 1994.
Math. Review 96e:60168
M. Cassandro, A. Galves, E. Oliveri, M.E. Vares. 
Metastable Behavior of Stochastic Dynamics: a Pathwise Approach. 
J. Stat. Phys. 35 (1984), n. 5-6, 603--634.
Math. Review 86c:82001
F. den Hollander. Metastability under stochastic dynamics.
Stoch. Proc. Appl. 114 (2004), no. 1, 1--26.
Math. Review 2005i:60197
L. R. Fontes, P. Mathieu, and  P. Picco.
On the averaged dynamics of the random field Curie-Weiss model. 
Ann. Appl. Probab. 10 (2000), no. 4, 1212--1245.
Math. Review 2002e:60158
Ch. Külske. 
Metastates in disordered mean-field models: random field and Hopfield models.
 J. Stat. Phys. 88 (1997), no. 5-6, 1257--1293.
Math. Review 2000a:82038
L.A. Levin, M. Luczak, Y. Peres. 
Glauber dynamics for the mean-field Ising model: cut-off, critical power law, and metastability.
 To appear in  Probab. Theory Related Fields. 
 Review number not available. 
R.S. Maier and D.L. Stein. 
Limiting exit location distributions in the stochastic exit problem. 
SIAM J. Appl. Math. 57 (1997), no. 3,  752--790.
Math. Review 98a:60112
P. Mathieu,  P. Picco. 
Metastability and convergence to equilibrium for the random field Curie-Weiss model. 
J. Stat. Phys. 91 (1998), no. 3-4, 679--732.
Math. Review 99d:82057
N.G. van Kampen. 
Stochastic processes in physics and chemistry.
Lecture Notes in Mathematics, 888. 
North-Holland Publishing Co., Amsterdam-New York, 1981(reprinted in 1990).
Math. Review 84h:60003
 
 
 
 |  
 
 
 | 
 
 
 
 
 
 
 
 
 
   | 
	|  |   
 
 |  | 
 
	|  | |  |  |  |  | 
 
 Electronic Journal of Probability.   ISSN: 1083-6489 |  |