|
|
|
| | | | | |
|
|
|
|
|
Sums of extreme values of subordinated long-range dependent sequences: moving averages with finite variance
|
Rafal Kulik, University of Ottawa |
Abstract
In this paper we study the limiting behavior of sums of extreme
values of long range dependent sequences defined as functionals of
linear processes with finite variance. If the number of extremes in a
sum is large enough,
we obtain asymptotic normality, however, the scaling factor is relatively bigger than
in the i.i.d case, meaning that the maximal terms have relatively
smaller contribution to the whole sum. Also, it is possible for a
particular choice of a model, that the scaling need not to depend on
the tail index of the underlying marginal distribution, as it is
well-known to be so in the i.i.d. situation. Furthermore,
subordination may change the asymptotic properties of
sums of extremes.
|
Full text: PDF
Pages: 961-979
Published on: June 12, 2008
|
Bibliography
-
Csörgö, M. Quantile processes with statistical applications.
CBMS-NSF Regional Conference Series in Applied Mathematics, 42.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1983).
Math. Review 86g:60045
-
Csörgö, M., Csörgö, S., Horváth, L. and Mason, D. M.
Weighted empirical and quantile processes. Ann. Probab. 14 (1986), no. 1, 31--85.
Math. Review 87e:60041
-
Csörgö, M., Csörgö, S., Horváth, L. and Mason, D. M.
Normal and stable convergence of integral functions of the empirical distribution function.
Ann. Probab. 14 (1986), no. 1, 86--118.
Math. Review 87d:60036
-
Csörgö, M. and Kulik, R. Reduction principles for
quantile and Bahadur-Kiefer processes of long-range dependent linear
sequences. Probab. Theory Relat. Fields (2008).
DOI: 10.1007/s00440-007-0107-9. Math. Review number not available yet.
-
Csörgö, M. and Kulik, R. Weak convergence of Vervaat
and Vervaat Error processes of long-range dependent Gaussian
sequences. J. Theoret. Probab (2008).
DOI: 10.1007/s10959-007-0124-8. Math. Review number not available yet.
-
Csörgö, M., Szyszkowicz, B., Wang, L.
Strong invariance principles for sequential Bahadur-Kiefer and Vervaat error processes
of long-range dependent sequences. Ann. Statist. 34 (2006), no. 2, 1013--1044.
Math. Review MR2283402
-
Csörgö, S., Haeusler, E. and Mason, D. M.
The quantile-transform--empirical-process approach to limit theorems for sums
of order statistics. Sums, trimmed sums and extremes,
215--267, Progr. Probab., 23, Birkhäuser Boston, Boston, MA, (1991).
Math. Review 92i:62101
-
Csörgö, S., Horváth, L. and Mason, D. M.
What portion of the sample makes a partial sum asymptotically stable or normal?
Probab. Theory Relat. Fields 72 (1986), no. 1, 1--16.
Math. Review 87k:60063
-
Csörgö, S. and Mason, D. M.
The asymptotic distribution of sums of extreme values from a regularly
varying distribution. Ann. Probab. 14 (1986), no. 3, 974--983.
Math. Review 87i:60022
-
Embrechts, P., Klüppelberg, C. and Mikosch, T. Modelling extremal events.
For insurance and finance.
Applications of Mathematics (New York), 33. Springer-Verlag, Berlin, (1997).
Math. Review 98k:60080
-
Giraitis, L. and Surgailis, D.
The reduction principle for the empirical process of a long memory linear process.
Empirical process techniques for dependent data, 241--255,
Birkhäuser Boston, Boston, MA, (2002).
Math. Review 2004a:62099
-
de Haan, L.
On regular variation and its application to the weak convergence of sample extremes.
Mathematical Centre Tracts, 32 Mathematisch Centrum, Amsterdam (1970).
Math. Review 44 #3370
-
Ho, H.-C. and Hsing, T.
On the asymptotic expansion of the empirical process of long-memory moving averages.
Ann. Statist. 24 (1996), no. 3, 992--1024.
Math. Review 97g:60032
-
Horváth, L. On the tail behaviour of quantile processes.
Stochastic Process. Appl. 25 (1987), no. 1, 57--72.
Math. Review 88g:62044
-
Koul, H. L. and Surgailis, D.
Asymptotic expansion of the empirical process of long memory moving averages.
Empirical process techniques for dependent data, 213--239,
Birkhäuser Boston, Boston, MA, (2002).
Math. Review 2003j:62114.
-
Kulik, R. and Ould Haye, M. Trimmed sums of long-range
dependent moving averages. Statist. Probab. Letters (2008).
DOI: 10.1016/j.spl.2008.02.033. Math. Review number not available yet.
-
Leadbetter, M. R., Lindgren, G., Rootzén, H.
.
Springer Series in Statistics. Springer-Verlag, New York-Berlin, (1983).
-
Koul, H. L. and Surgailis, D.
Asymptotic expansion of the empirical process of long memory moving averages.
Empirical process techniques for dependent data, 213--239,
Birkhäuser Boston, Boston, MA, (2002).
Math. Review 84h:60050.
-
Lo, G. S. A note on the asymptotic normality of sums of extreme values.
J. Statist. Plann. Inference 22 (1989), no. 1, 127--136.
Math. Review 90f:62058.
-
Mikosch, T. and Samorodnitsky, G.
The supremum of a negative drift random walk with dependent heavy-tailed steps.
Ann. Appl. Probab. 10 (2000), no. 3, 1025--1064.
Math. Review 2001j:60056.
-
Parzen, E. Nonparametric statistical data modeling.
With comments by John W. Tukey, Roy E. Welsch, William F. Eddy, D. V. Lindley, Michael E. Tarter and Edwin L. Crow, and a rejoinder by the author.
J. Amer. Statist. Assoc. 74 (1979), no. 365, 105--131.
Math. Review 81b:62053.
-
Samorodnitsky, G.
Extreme value theory, ergodic theory and the boundary between short memory
and long memory for stationary stable processes. Ann. Probab.
32 (2004), no. 2, 1438--1468.
Math. Review 2005c:60038.
-
Shao, Q.-M. and Yu, H. Weak convergence for weighted empirical processes
of dependent sequences.
Ann. Probab. 24 (1996), no. 4, 2098--2127.
Math. Review 97k:60095.
-
Stigler, S. M.
The asymptotic distribution of the trimmed mean.
Ann. Statist. 1 (1973), 472--477.
Math. Review 50 #11589.
-
Wu, W. B.
Empirical processes of long-memory sequences. Bernoulli 9
(2003), no. 5, 809--831.
Math. Review 2005f:62084.
-
Wu, W. B.
On the Bahadur representation of sample quantiles for dependent sequences.
Ann. Statist. 33 (2005), no. 4, 1934--1963.
Math. Review 2006g:62048.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|