![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Posterior metric and the Goodness
of Gibbsianness
for transforms of Gibbs measures
|
Christof Külske, University of Groningen Alex A Opoku, University of Groningen |
Abstract
We present a general method to derive
continuity estimates for conditional probabilities of general
(possibly continuous) spin models subjected to local
transformations. Such systems arise in the study of a stochastic
time-evolution of Gibbs measures or as noisy observations.
Assuming no a priori metric on the local state spaces but only a measurable
structure, we define the posterior metric on the local image space.
We show that it allows in a natural way to divide
the local part of the continuity estimates from the spatial part
(which is treated by Dobrushin uniqueness here).
We show in the
concrete example of the time evolution of
rotators on the $(q-1)$-dimensional sphere how this
method can be used to obtain estimates in terms of the familiar
Euclidean metric.
In another application we prove the preservation of Gibbsianness for
sufficiently fine local coarse-grainings when the Hamiltonian satisfies a Lipschitz
property
|
Full text: PDF
Pages: 1307-1344
Published on: August 25, 2008
|
Bibliography
-
H.-O. Georgii.
Gibbs Measures and Phase Transitions.
de Gruyter Studies in Mathematics (1988)
Math. Review 89k:82010
- C. Müller. Spherical Harmonics. Lecture Notes in Mathematics
17 Springer (1966).
Math. Review 33:7593
- C. Külske and A. Le Ny. Spin-flip dynamics of the Curie-Weiss
model: Loss of Gibbsianness with possibly broken symmetry. Commun. Math. Phys.
271, 431-454 (2007).
Math. Review 2008f:82058
- A.C.D. van Enter, R. Fernàndez, F. den Hollander and F. Redig.
Possible Loss and recovery of Gibbsianness during the stochastic evolution of
Gibbs Measures. Commun. Math. Phys. 226, 101-130 (2002).
Math. Review 2003e:82040
- R. Fernàndez. Gibbsianness and non-Gibbsianness in lattice random fields. Les
Houches, LXXXIII, (2005). Math. Review number not available.
- C. Külske. Concentration Inequalities for Functions of Gibbs Fields with Applications
to Diffraction and Random Gibbs Measures. Commun. Math. Phys. 239,
29-51 (2003).
Math. Review 2004i:60069
- C. Külske, J.-R. Chazottes, P. Collet and F. Redig. Concentration Inequalities for
random fields via Coupling. Prob. Theory Relat. Fields 137, 201-225 (2006).
Math. Review MR2278456
- A.C.D. van Enter and C. Külske. Two connections between random systems and
non-Gibbsian measures. J. Stat. Phys. 126, 1007-1024 (2007).
Math. Review 2008f:82037
- A. Le Ny and F. Redig. Short-time conservation of Gibbsianness under local stochastic
evolution. J. Stat. Phys. Volume 109, 1073-1090 (2002).
Math. Review 2003i:82060
- C. Külske, F. Redig. Loss without recovery of Gibbsianness during diffusion of
continuous spins. Prob. Theory Relat. Fields 135, 428-456 (2006).
Math. Review 2007g:82036
- A.C.D. van Enter, R. Fernàndez and A.D. Sokal. Regularity properties and pathologies
of position-space renormalization-group transformations: Scope and limitations of
Gibbsian theory. J. Stat. Phys. 72, 879-1167 (1993).
Math. Review 94m:82012
- C. Külske. Non-Gibbsianness and phase transitions in random lattice spin models.
Markov. Proc. Rel. Fields 5, 357-383 (1999).
Math. Review 2001a:82042
- T. Lindvall and L.C.G. Rogers. Coupling of multidimensional Diffusion by Reflection.
Ann. Probab. 14, 860-872 (1986).
Math. Review 88b:60179
- R.L. Dobrushin. The description of a random field by means of conditional probabilities
and conditions of its regularity. Theor. Prob. Appl. 13, 197-224 (1968).
Math. Review number not available.
- I. Karatzas and S.T. Shreve. Brownian Motion and Stochastic Calculus, 2ed. Springer-
Verlag, GTM 113 (1991).
Math. Review 92h:60127
- P. Lévy. Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris
(1948).
Math. Review 10,551a
- A.C.D. van Enter and W.M. Ruszel. Gibbsianness vs. Non-Gibbsianness of time-evolved
planar rotor models. arXiv:0711.3621v1 (2007).
Math. Review number not available.
- C. Külske and A.A. Opoku. Continuous Spin Mean-Field models: Limiting kernels
and Gibbs Properties of local transforms. arXiv:0806.0802 (2008).
Math. Review number not available.
- R.L. Dobrushin and M. Zahradník. Phase diagrams for continuous-spin models: An extension
of the Pirogov-Sinai Theory. Math. Problems of Stat. Phys. and Dynamics,
Reidel, 1-123 (1986).
Math. Review 88k:82015
- R.B. Israel. High-Temperature Analyticity in Classical Lattice Systems. Commun.
Math. Phys. 50, 245-257 (1976).
Math. Review 56:4578
- J.-D. Deuschel. Infinite-dimensional diffusion processes as Gibbs measures on
C[0; 1]^(Z^d). Prob. Theory Relat. Fields 76, 325-340 (1987).
Math. Review 89m:60252
- D. Dereudre and S. Roelly. Propagation of Gibbsianness for infinite-dimensional gradient
Brownian diffusions. J. Stat. Phys. 121, 511-551 (2005).
Math. Review 2006m:82094
- R. Fernàndez and G. Maillard. Construction of a specification from its singleton part.
ALEA Lat. Am. J. Probab. Math. Stat. 2, 297-315 (2006)
Math. Review 2007k:60322
- P. Auscher, T. Coulhon, X.T. Duong and S. Hofmann. Riesz transform on manifolds
and heat kernel regularity. Ann. Sci. Ecole Norm. Sup. 37, 911-957 (2004).
Math. Review 2005k:58043
- J. Fröhlich, B. Simon and T. Spencer. Infrared bounds, phase transitions and continuous
symmetry breaking. Comm. Math. Phys. 50 79-95 (1976).
Math. Review 54:9530
- P. Bilingsley. Probability and Measure 3rd ed. A Wiley-Interscience Publication
(1995).
Math. Review 95k:60001
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|