Bibliography
M. Abramowitz, I.A. Stegun (Eds.):
Handbook of mathematical functions,
Dover, New-York, 1965.
Math. Review link 94b:00012
P. Biane, M. Yor:
Quelques précisions sur le méandre Brownien,
Bull. Sci. Math. 111, 101-109 (1988)
Math. Review link 89i:60156
D.A. Dawson:
Measure-valued Markov processes,
Ecole d'été de St-Flour 1991, Lecture Notes in Math. 1541, Springer,
Berlin, 1993.
Math. Review link 94m:60101
D.A. Dawson, I. Iscoe, E.A. Perkins:
Super-Brownian motion: Path properties and hitting
probabilities,
Probab. Theor. Rel. Fields 83, 135-205 (1989)
Math. Review link 90k:60073
D.A. Dawson, E.A. Perkins:
Historical superprocesses,
Memoirs Amer. Math. Soc. 454, 1991.
Math. Review link 92a:60145
A. Dembo, O. Zeitouni:
Large deviations for random distribution of mass,
Proceedings of the IMA workshop on random discrete structures
(Ed. D.J. Aldous, R. Pemantle), IMA vol. 76, Springer, 45-53 (1994)
Math. Review link 97d:60051
J.-S. Dhersin:
Super-mouvement brownien, serpent brownien et équations
aux dérivées partielles, Thèse de doctorat de l'université Paris 6,
1997.
J.-S. Dhersin, J.-F. Le Gall:
Wiener's test for super-Brownian motion and the Brownian snake,
Probab. Theor. Rel. Fields, to appear.
E.B. Dynkin:
A probabilistic approach to one class of nonlinear differential equations,
Probab. Theor. Rel. Fields 89, 89-115 (1991)
Math. Review link 92d:35090
E.B. Dynkin:
An introduction to branching measure-valued processes,
CRM Monograph Series Vol.6, Amer. Math. Soc., Providence, 1994.
Math. Review link 96f:60145
E.B. Dynkin, S.E. Kuznetsov:
Markov snakes and superprocesses,
Probab. Theor. Rel. Fields 103, 433-473 (1995)
Math. Review link 96k:60188
J.-P. Imhof:
Density factorizations for Brownian motion and the three-dimensional
Bessel processes and applications,
J. Appl. Prob. 21, 500-510 (1984)
Math. Review link 85j:60152
J.-F. Le Gall:
A class of path-valued Markov processes and its applications to superprocesses,
Probab. Th. Rel. Fields 95, 25-46 (1993)
Math. Review link 94f:60093
J.-F. Le Gall:
A path-valued Markov process and its connections with partial
differential equations,
Proceedings 1st European Congress of Mathematics,
Vol. II, pp. 185-212, Birkhäuser, Boston, 1994.
Math. Review link 96m:60169
J.-F. Le Gall:
The Brownian snake and solutions of
$Delta u = u^2$
in a domain,
Probab. Th. Rel. Fields 104, 393-432
Math. Review link 96c:60098
J.-F. Le Gall:
A probabilistic Poisson representation for positive solutions of
$Delta u = u^2$
in a domain, Comm. Pure Appl. Math. 50, 69-103 (1997)
J.-F. Le Gall:
Superprocesses, Brownian snakes and partial differential equations,
Lecture Notes from the 11th winter school on Stochastic processes,
Sigmundsburg, March 1996, Prépublication 337 du Laboratoire de
Probabilités, Université Paris VI (1996).
J.-F. Le Gall, E.A. Perkins:
The Hausdorff measure of the support of two-dimensional
super-Brownian motion, Ann. Probab. 23, 1719-1747 (1995)
Math. Review link 96m:60114
S.C. Port, C.J. Stone:
Brownian motion and classical potential theory,
Academic Press, New-York, 1978.
Math. Review link 58#11459
D. Revuz, M. Yor:
Continuous martingales and Brownian motion,
Springer, Berlin, 1991.
Math. Review link 92d:60053
L. Serlet:
Some dimension results for super-Brownian motion,
Probab. Theor. Rel. Fields 101, 371-391 (1995)
Math. Review link 96m:60115
L. Serlet:
On the Hausdorff measure of multiple points and collision points
of super-Brownian motion,
Stochastics Stoch. Rep. 54, 169-198 (1995)
L. Serlet:
The occupation measure of super-Brownian motion conditioned
on non-extinction, J. Theor. Prob. 9, 561-578 (1996)
L. Serlet:
Large deviation principle for the Brownian snake, Stoch. Proc. Appl.,
to appear.
J. Verzani:
Cone paths for the planar Brownian snake,
Probab. Theor. Rel. Fields, to appear
M. Yor:
Some aspects of Brownian motion, Part I: Some special functionals,
Lectures in Mathematics, ETH Zürich, Birkhäuser, 1992
Math. Review link 93i:60155
M. Yor:
Generalized meanders as limits of weighted Bessel processes, and an elementary
proof of Spitzer's asymptotic result on Brownian windings,
Stud. Sci. Math. Hung., to appear.
|