|
|
|
| | | | | |
|
|
|
|
|
Large Deviation Principle for a Stochastic Heat Equation With Spatially Correlated Noise
|
David Marquez-carreras, Universitat de Barcelona Monica Sarra, Universitat de Barcelona |
Abstract
In this paper we prove a large deviation principle (ldp) for a
perturbed stochastic heat equation defined on $[0,T]times [0,1]^d$.
This equation is driven by a Gaussian noise, white in time and correlated
in space.
Firstly, we show the H"older continuity for
the solution of the stochastic heat
equation.
Secondly, we check that our Gaussian process satisfies a
ldp and some requirements
on the skeleton of the solution.
Finally, we prove the called Freidlin-Wentzell inequality.
In order to obtain all these results we need precise
estimates of the fundamental solution of this equation.
|
Full text: PDF
Pages: 1-39
Published on: July 18, 2003
|
Bibliography
-
Azencott R., Grandes d'eviations et applications,
Ecole d''Et'e de Probabilit'es de Saint Flour VIII-1978, Lectures
Notes in Math. 774 (1980) 1-176,
Springer-Verlag, Berlin.
MR:81m:58085
-
Chenal F. Principes de grandes d'eviations
pour des
'equations aux d'eriv'ees partielles stochastiques et applications,
Th`ese de doctorat de l'Universit'e Paris 6, Paris.
-
Chenal F. and Millet A.
Uniform large deviations
for parabolic SPDE's and applications,
Stochastic Processes and their
Applications 72 (1997) 161-186.
MR:98m:60038
- Dalang R.C.
Extending the martingale measure stochastic
integral with applications to spatially homogeneous s.p.d.e's,
Electronic Journal of Probability Vol.4 (1999) 1-29.
http://www.math.washington.edu/~ejpecp/EjpVol4/paper6.
MR:2000b:60132
- Dalang R.C. and Frangos N.E. The stochastic
wave equation in
two spatial dimensions, Annals of Probabability
26-1 (1998) 187-212.
MR:99c:60127
-
Dembo A. and Zeitouni O.
Large deviations
techniques and applications, (1983)
Jones and Barlett Publishers, Boston.
-
Deuschel J.D. and Stroock D.W.
Large deviations,
Pure and Applied Mathematics, vol 137, (1989) Academic Press, Boston.
MR:90h:60026
-
Eidelman S.D. and Ivasisen S.D.
Investigation of
the Green matrix for a homogeneous parabolic boundary value problem,
Trans. Moscow Math. Soc. 23 (1970) 179-242.
MR:51#3697
-
Franzova N.
Long time existence for the
heat equation with a spatially correlated noise term,
Stochastic analysis
and Applications 17-2 (1999) 169-190.
MR:99m:35278
-
Freidlin M.I. and Wentzell A.D.
Random perturbation
of dynamical systems, (1984) Springer-Verlag, New York.
MR:85a:60064
-
Friedman, A. (1964)
Partial differential equations of
parabolic type, (1964) Prentice-Hall, New York.
MR: 31#6062
-
Karczewska A. and Zabczyk J.
Stochastic PDE's with function-valued solutions,
to appear
in Clément Ph., den Hollander F., van Neerven J., and de Pagter B.
(Eds.), "Infinite-Dimensional Stochastic Analysis",
Proceedings of the Colloquium
of the Royal Netherlands Academy
of Arts and Sciences, (1999) Amsterdam.
MR:2002h:60132
-
Márquez-Carreras D.,
Mellouk M. and Sarrá M.
On stochastic partial differential equations with
spatially correlated noise: smoothness of the law,
Stochastic Processes and
their Applications 93 (2001) 269-284.
MR: 2002e:60089
-
Márquez-Carreras D. and Sanz-Solé M.}
Smal perturbations in a hyperbolic stochastic partial
differential equation, Stochastic Processes and
their Applications 68 (1997) 133-154.
MR:98d:60124
-
Millet A. and Morien P.L.
On a stochastic wave equation in two
space dimension regularity of the solution and its density,
Prépublications de Mathématiques
de l'Université de Paris 10 98/5.
-
Millet A. and Sanz-Solé M.
A stochastic wave
equation in two
space dimension: Smoothness of the law,
Annals of Probability
27-2 (1999) 803-844.
MR:2001e:60130
-
Peszat S. and Zabczyk J.
Stochastic evolution
equations with a spatially homogeneous Wiener process,
Stochastic Processes and
their Applications 72 (1997) 187-204.
MR:99k:60166
-
Peszat S. and Zabczyk J.
Nonlinear stochastic
wave and heat equations,
Preprint of
Institut of Mathematics. Polish Academy of Sciences 584 (1998).
-
Priouret P.
Remarques sur les petits perturbations
de syst&ecute;mes dynamiques,
Séminaire de Probabilités XVI,
Lecture Notes in Math.
920 (1982) 184-200, Springer, Berlin.
MR:84g:58096
-
Sanz-Solé M. and Sarrá M.
Path properties
of a class of Gaussian processes with applications to spde's,
Canadian Mathematical Society, Conference Proceedings
28 (2000) 303-316.
MR:2001m:60148
-
Sanz-Solé M. and Sarrá M.
H"older continuity for the stochastic heat equation with spatially
correlated noise, Progress in Probability 52 (2002) 259-268.
MR:1
958 822
-
Sowers R.B.
Large deviations for a reaction-diffusion
equation with non-Gaussian perturbations,
Annals of Probability
20 (1992) 504-537.
MR:93e:60125
-
Walsh J.B.
An introduction to stochastic partial
differential equations,
École d'Été de Prob. de St-Flour XIV-1984,
Lect. Notes in Math. 1180, (1986)
Springer-Verlag.
MR:88a:60114
-
Watanabe S.
Stochastic differential equation
and Malliavin Calculus, Tata Institue, (1984) Springer-Verlag.
MR:86b:60113
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|