|
|
|
| | | | | |
|
|
|
|
|
The Exact Asymptotic of the Time to Collision
|
Zbigniew Puchala, Wroclaw University Tomasz Rolski, Wroclaw University |
Abstract
In this note we consider the time of the collision $tau$ for $n$ independent copies
of Markov processes $X^1_t,. . .,X^n_t$, each starting from $x_i$,where
$x_1 <. . .< x_n$. We show that for the continuous time random walk
$P_{x}(tau > t) = t^{-n(n-1)/4}(Ch(x)+o(1)),$ where $C$ is known and
$h(x)$ is the Vandermonde determinant. From the proof one can see that the
result also holds for $X_t$ being the Brownian motion or the Poisson process.
An application to skew standard Young tableaux is given.
|
Full text: PDF
Pages: 1359-1380
Published on: November 18, 2005
|
Bibliography
- M. Abramowitz, I.A. Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards (1964).
Math. Review 29 #4914
- S. Asmussen, Applied Probability and Queues. Second Ed.,Springer (2003), New York.
Math. Review 2004f:60001
- A. Dembo, O. Zeitouni Large Deviations Techniques and Applications . Jones and Bartlett (1993), Boston.
Math. Review 95a:60034
- Y. Doumerc, N. O'Connell, Exit problems associated with finite reflection groups. Probability Theory and Related Fields 132 (2005), 501 - 538
Math. Review number not available.
- W. Fulton Young Tableaux . Cambridge University Press (1997), Cambridge.
Math. Review 99f:05119
- D.J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. H. Poincaré. Probab. Statist. bf 35 (1999), 177-204.
Math. Review 2000i:60091
- K. Knopp, Theorie und Anwendung der unendlichen Reichen 4th Ed., Springer-Verlag (1947), Berlin and Heidelberg.
Math. Review 10,446a
- I.G. Macdonald, Symetric Functions and Hall Polynomials .Clarendon Press (1979), Oxford.
Math. Review 84g:05003
- W. Massey (1987) Calculating exit times for series Jackson networks. J. Appl. Probab. , 24/1.
Math. Review 88d:60236
- M.L. Mehta, Random Matrices . Second edition. Academic Press (1991), Boston.
Math. Review 92f:82002
- Z. Puchala, A proof of Grabiner's theorem on non-colliding particles. Probability and Mathematical Statistics (2005).
- A. Regev, Asymptotic values for degrees associated with stripes of Young diagrams, Adv. Math. 41 (1981), 115-136.
Math. Review 82h:20015
- G.N. Watson, A Treatise on the Theory of Bessel Functions 2nd ed . Cambridge University Press, (1944), Cambridge.
Math. Review 6,64a
- E.W. Weisstein, Power Sum . From MathWorld -- A Wolfram Web Resource. http://mathworld.wolfram.com/PowerSum.html. Math. Review number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|