  | 
	
	
	 | 
	 | 
	
		 |  |  |  |  | 	 | 
	 | 
	 | 
	
		
	 | 
	 | 
	 | 
	 
	
 
 
	
	    
The Exact Asymptotic of the Time to Collision	   
  
	 | 
  
 
	  
		 
			
			   
Zbigniew  Puchala, Wroclaw University Tomasz  Rolski, Wroclaw University 			 | 
		  
	   
		
  
		
			 
				
					   
					   Abstract 
	In this note we consider the time of the collision $tau$ for $n$ independent copies
 of Markov processes $X^1_t,. . .,X^n_t$, each starting from $x_i$,where 
$x_1 <. . .< x_n$. We show that for the continuous time random walk 
$P_{x}(tau > t) = t^{-n(n-1)/4}(Ch(x)+o(1)),$ where $C$ is known and 
$h(x)$ is the Vandermonde determinant. From the proof one can see that the 
result also holds for $X_t$ being the Brownian motion or the Poisson process. 
An application to skew standard Young tableaux is given.
				   
 
  
				 | 
			  
		   
   
Full text: PDF
  Pages: 1359-1380
  Published on: November 18, 2005
 
  
	 | 
 
 
                
                         
                                
                                          
                                           Bibliography 
        
- M. Abramowitz, I.A. Stegun, I.A.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards (1964).
Math. Review 29 #4914
 - S. Asmussen,  Applied Probability and Queues.  Second Ed.,Springer (2003), New York. 
Math. Review 2004f:60001
 - A. Dembo, O. Zeitouni  Large Deviations Techniques and Applications . Jones and Bartlett (1993), Boston.
Math. Review 95a:60034
 - Y. Doumerc, N. O'Connell,   Exit problems associated with finite reflection groups.  Probability Theory and Related Fields  132 (2005), 501 - 538
Math. Review number not available.
 - W. Fulton   Young Tableaux . Cambridge University Press (1997), Cambridge.
Math. Review 99f:05119
 - D.J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices.  Ann. Inst. H. Poincaré. Probab. Statist. bf 35 (1999), 177-204.
Math. Review 2000i:60091
 - K. Knopp,   Theorie und Anwendung der unendlichen Reichen  4th Ed., Springer-Verlag (1947), Berlin and Heidelberg.
Math. Review 10,446a
 - I.G. Macdonald,    Symetric Functions and Hall Polynomials .Clarendon Press (1979), Oxford.
Math. Review 84g:05003
 - W. Massey (1987) Calculating exit times for series Jackson networks.  J. Appl. Probab. ,  24/1.
Math. Review 88d:60236
 - M.L. Mehta,  Random Matrices . Second edition. Academic Press (1991), Boston.
Math. Review 92f:82002
 - Z. Puchala, A proof of Grabiner's theorem on non-colliding particles. Probability and Mathematical Statistics  (2005).
 - A. Regev, Asymptotic values for degrees associated with stripes of Young diagrams,  Adv. Math.   41 (1981), 115-136.
Math. Review 82h:20015
 - G.N. Watson,  A Treatise on the Theory of Bessel Functions 2nd ed . Cambridge University Press, (1944), Cambridge.
Math. Review 6,64a
 - E.W. Weisstein,  Power Sum . From MathWorld -- A Wolfram Web Resource. http://mathworld.wolfram.com/PowerSum.html. Math. Review number not available.  
  
                                   
 
  
                                 | 
                          
                   
	  
 
 
 
 | 
		
			
 
 
 
 
 
 
 
 
  
			
			
			
			 
		 | 
		
	| 
	 | 
	
    	 
    	
  
     | 
     | 
 
	 | 
	
		 |  |  |  |  | 
 
 Electronic Journal of Probability.   ISSN: 1083-6489 	 | 
	 |