![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
On normal domination of (super)martingales
|
Iosif Pinelis, Michigan Technological University |
Abstract
Let $(S_0,S_1,dots)$ be a supermartingale relative to a nondecreasing sequence of $sigma$-algebras $(H_{le0},H_{le1},dots)$, with $S_0le0$ almost surely (a.s.) and differences $X_i:=S_i-S_{i-1}$. Suppose that for every $i=1,2,dots$ there exist $H_{le(i-1)}$-measurable r.v.'s $C_{i-1}$ and $D_{i-1}$ and a positive real number $s_i$ such that
$C_{i-1}le X_ile D_{i-1}$ and
$D_{i-1}-C_{i-1}le 2 s_i$
a.s. Then for all %real $t$ and
natural $n$ and all functions $f$ satisfying certain convexity conditions
begin{equation*}%label{eq:bernoulli}
E f(S_n)leE f(sZ),
end{equation*}
where %$f_t(x):=max(0,x-t)^5$,
$s:=sqrt{s_1^2+dots+s_n^2}$ %,
and $Zsim N(0,1)$. In particular, this implies
begin{equation*}%label{eq:bernoulli}
P(S_nge x)le c_{5,0}P(sZge x)quadforall xinR,
end{equation*}
where $c_{5,0}=5!(e/5)^5=5.699dots.$ Results for $max_{0le kle n}S_k$ in place of $S_n$ and for concentration of measure also follow.
|
Full text: PDF
Pages: 1049-1070
Published on: November 21, 2006
|
Bibliography
-
Bentkus, V.
On measure concentration for separately Lipschitz functions in product spaces.
Israel J. Math. To appear (2001).
Math. Reviews number not available.
-
Bentkus, V.
An inequality for tail probabilities of
martingales with differences bounded from one side.
J. Theoret. Probab 16 (2003), 161--173.
Math. Reviews 1956826
-
Bentkus, V.
On Hoeffding's inequalities.
Ann. Probab. 32 (2004), 1650--1673.
Math. Reviews 2060313
-
Bobkov, S. G.; Gtze, F.; Houdr, C.
On Gaussian and Bernoulli covariance representations.
Bernoulli 7 (2001), 439--451.
Math. Reviews 1836739
-
Dembo, A.
Information inequalities and concentration of measure.
Ann. Probab. 25 (1997), 927--939.
Math. Reviews 1434131
-
Eaton, M. L.
A note on symmetric {B}ernoulli random variables.
Ann. Math. Statist. 41 (1970), 1223--1226.
Math. Reviews 268930
-
Eaton, M. L.
A probability inequality for linear
combinations of bounded random variables.
Ann. Statist. 2 (1974), 609--614.
Math. Reviews number not available.
-
Edelman, D.
An inequality of optimal order for the tail probabilities of the probabilities of the
T statistic under symmetry.
J. Amer. Statist. Assoc. 85 (1990), 120--122.
Math. Reviews 1137357
-
Fuk, D. H.
Certain probabilistic inequalities for martingales.
Siberian Math. J. 14 (1973), 131--137.
Math. Reviews 0326835
-
Fuk, D. H. and Nagaev, S. V.
Probabilistic inequalities for sums of independent random variables. (Russian. English summary)
Teor. Verojatnost. i Primenen. 16 (1971), 660--675.
Math. Reviews 0293695
-
Graversen, S. E.; Pev skir, G.
Extremal problems in the maximal inequalities of Khintchine.
Math. Proc. Cambridge Philos. Soc. 123 (1998), 169--177.
Math. Reviews 1474873
-
Haagerup, U.
The best constants in the Khinchine
inequality.
Studia Math. 70 (1982), 231--283.
Math. Reviews 0654838
-
Hoeffding, W.
Probability inequalities for sums of bounded random variables.
J. Amer. Statist. 58 (1963), 13--30.
Math. Reviews 144363
-
Karr, A. F.
Extreme points of certain sets of probability measures, with applications.
Math. Oper. Res. 8 (1983), 74--85.
Math. Reviews 703827
-
Khinchin, A.
ber dyadische Brche.
Math. Z. 18 (1923), 109--116.
Math. Review number not available.
-
Ledoux, M.
Concentration of measure and logarithmic Sobolev inequalities.
Sminaire de probabilits, XXXIII; Lecture Notes in Math. 1709 (1999), 120--216.
Math. Reviews 1767995
-
McDiarmid, C.
On the method of bounded differences.
Surveys in combinatorics; London Math. Soc. Lecture Note Ser. 141 (1989), 148--188.
Math. Reviews 1036755
-
McDiarmid, C.
Concentration.
Probabilistic methods for algorithmic discrete mathematics. Algorithms Combin. 16 (1998), 195--248.
Math. Reviews 1678578
-
Nagaev, S. V.
Large deviations of sums of independent random variables.
Ann. Probab. 7 (1979), 745--789.
Math. Reviews 0542129
-
Pinelis, I. F.
Limit theorems on large deviations for sums of independent random variables with Cramer's condition violated. Deposited at
VINITI (All-Russian Institute of Scientific and Technical Information
for
All-Union Institute of Scientific and Technical Information No. 1674-81Dep., 94 pages (1981).
Math. Review number not available.
-
Pinelis, I. F.
Asymptotic equivalence of the
probabilities of large deviations
for sums and maximum of independent random variables. (Russian).
Limit
theorems of probability
theory, 144--173, 176, Trudy Inst. Mat. 5 (1985) ``Nauka'' Sibirsk. Otdel., Novosibirsk.
Math. Reviews 0821760
-
Pinelis, I.
Extremal probabilistic problems and Hotelling's
T2 test under a symmetry condition.
Ann. Statist. 22 (1994), 357--368.
Math. Reviews 1272088
-
Pinelis, I.
Optimum bounds for the distributions of martingales in Banach spaces.
Ann. Probab. 22 (1994), 1679--1706.
Math. Reviews 1331198
-
Pinelis, I.
Optimal tail comparison based on comparison of moments.
High dimensional probability (Oberwolfach, 1996). Progr. Probab. 43 (1998), 297--314.
Math. Reviews 1652335
-
Pinelis, I.
Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities.
Advances in stochastic inequalities (Atlanta, GA, 1997). Contemp. Math. 234 (1999), 149--168.
Math. Reviews 1694770
-
Pinelis, I.
On exact maximal Khinchine inequalities.
High dimensional probability, II (Seattle, WA, 1999). Progr. Probab. 47 (2000), 49--63.
Math. Reviews 1857314
-
Pinelis, I.
L'Hospital type rules for oscillation, with applications.
J. Inequal. Pure Appl. Math. 2 (2001), 3, Article 33, 24 pp. (electronic).
Math. Reviews 1876266
-
Pinelis, I.
L'Hospital type rules for monotonicity: applications to probability inequalities for sums of bounded random variables.
J. Inequal. Pure Appl. Math. 3 (2001), 1, Article 7, 9 pp. (electronic).
Math. Reviews 1888922
-
Pinelis, I. Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above.
IMS Lecture NotesMonograph Series. High Dimensional Probability. 51 (2006), DOI: 10.1214/074921706000000743. To appear.
Math. Reviews number not available.
-
Pinelis, I. On inequalities for sums of bounded random variables.
Preprint, 2006.
Math. Reviews number not available.
-
Pinelis, I. Toward the best constant factor for the Rade-macher-Gaussian tail comparison.
Preprint, 2006.
Math. Reviews number not available.
-
Pinelis, I. Toward the best constant factor for the Rade-macher-Gaussian tail comparison.
Preprint, 2006.
Math. Reviews number not available.
-
Pinelis, I.; Sakhanenko, A. I.
emarks on inequalities for probabilities of large deviations.
Theory Probab. Appl. 30 (1985), 143--148.
Math. Reviews 0779438
-
Shorack, G. R. and Wellner, J. A.
Empirical Processes with Applications to Statistics.
(1986) Wiley, New York.
Math. Reviews 0838963
-
Talagrand, M.
Concentration of measure and isoperimetric inequalities in product spaces.
Inst. Hautes tudes Sci. Publ. Math. No. 81 (1995), 73--205.
Math. Reviews 1361756
-
Whittle, P.
Bounds for the moments of linear and quadratic forms in independent variables.
Teor. Verojatnost. i Primenen.. 5 (1960), 331--335.
Math. Reviews 0133849
-
Yurinskii, V. V. (Jurinskiui, V. V.)
Exponential estimates for large deviations. (Russian)
Teor. Verojatnost. i Primenen.. 19 (1974), 152--154.
Math. Reviews 334298
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|