Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 11 (2006) > Paper 39 open journal systems 


On normal domination of (super)martingales

Iosif Pinelis, Michigan Technological University


Abstract
Let $(S_0,S_1,dots)$ be a supermartingale relative to a nondecreasing sequence of $sigma$-algebras $(H_{le0},H_{le1},dots)$, with $S_0le0$ almost surely (a.s.) and differences $X_i:=S_i-S_{i-1}$. Suppose that for every $i=1,2,dots$ there exist $H_{le(i-1)}$-measurable r.v.'s $C_{i-1}$ and $D_{i-1}$ and a positive real number $s_i$ such that $C_{i-1}le X_ile D_{i-1}$ and $D_{i-1}-C_{i-1}le 2 s_i$ a.s. Then for all %real $t$ and natural $n$ and all functions $f$ satisfying certain convexity conditions begin{equation*}%label{eq:bernoulli} E f(S_n)leE f(sZ), end{equation*} where %$f_t(x):=max(0,x-t)^5$, $s:=sqrt{s_1^2+dots+s_n^2}$ %, and $Zsim N(0,1)$. In particular, this implies begin{equation*}%label{eq:bernoulli} P(S_nge x)le c_{5,0}P(sZge x)quadforall xinR, end{equation*} where $c_{5,0}=5!(e/5)^5=5.699dots.$ Results for $max_{0le kle n}S_k$ in place of $S_n$ and for concentration of measure also follow.


Full text: PDF

Pages: 1049-1070

Published on: November 21, 2006


Bibliography
  1. Bentkus, V. On measure concentration for separately Lipschitz functions in product spaces. Israel J. Math. To appear (2001). Math. Reviews number not available.
  2. Bentkus, V. An inequality for tail probabilities of martingales with differences bounded from one side. J. Theoret. Probab 16 (2003), 161--173. Math. Reviews 1956826
  3. Bentkus, V. On Hoeffding's inequalities. Ann. Probab. 32 (2004), 1650--1673. Math. Reviews 2060313
  4. Bobkov, S. G.; Gtze, F.; Houdr, C. On Gaussian and Bernoulli covariance representations. Bernoulli 7 (2001), 439--451. Math. Reviews 1836739
  5. Dembo, A. Information inequalities and concentration of measure. Ann. Probab. 25 (1997), 927--939. Math. Reviews 1434131
  6. Eaton, M. L. A note on symmetric {B}ernoulli random variables. Ann. Math. Statist. 41 (1970), 1223--1226. Math. Reviews 268930
  7. Eaton, M. L. A probability inequality for linear combinations of bounded random variables. Ann. Statist. 2 (1974), 609--614. Math. Reviews number not available.
  8. Edelman, D. An inequality of optimal order for the tail probabilities of the probabilities of the T statistic under symmetry. J. Amer. Statist. Assoc. 85 (1990), 120--122. Math. Reviews 1137357
  9. Fuk, D. H. Certain probabilistic inequalities for martingales. Siberian Math. J. 14 (1973), 131--137. Math. Reviews 0326835
  10. Fuk, D. H. and Nagaev, S. V. Probabilistic inequalities for sums of independent random variables. (Russian. English summary) Teor. Verojatnost. i Primenen. 16 (1971), 660--675. Math. Reviews 0293695
  11. Graversen, S. E.; Pev skir, G. Extremal problems in the maximal inequalities of Khintchine. Math. Proc. Cambridge Philos. Soc. 123 (1998), 169--177. Math. Reviews 1474873
  12. Haagerup, U. The best constants in the Khinchine inequality. Studia Math. 70 (1982), 231--283. Math. Reviews 0654838
  13. Hoeffding, W. Probability inequalities for sums of bounded random variables. J. Amer. Statist. 58 (1963), 13--30. Math. Reviews 144363
  14. Karr, A. F. Extreme points of certain sets of probability measures, with applications. Math. Oper. Res. 8 (1983), 74--85. Math. Reviews 703827
  15. Khinchin, A. ber dyadische Brche. Math. Z. 18 (1923), 109--116. Math. Review number not available.
  16. Ledoux, M. Concentration of measure and logarithmic Sobolev inequalities. Sminaire de probabilits, XXXIII; Lecture Notes in Math. 1709 (1999), 120--216. Math. Reviews 1767995
  17. McDiarmid, C. On the method of bounded differences. Surveys in combinatorics; London Math. Soc. Lecture Note Ser. 141 (1989), 148--188. Math. Reviews 1036755
  18. McDiarmid, C. Concentration. Probabilistic methods for algorithmic discrete mathematics. Algorithms Combin. 16 (1998), 195--248. Math. Reviews 1678578
  19. Nagaev, S. V. Large deviations of sums of independent random variables. Ann. Probab. 7 (1979), 745--789. Math. Reviews 0542129
  20. Pinelis, I. F. Limit theorems on large deviations for sums of independent random variables with Cramer's condition violated. Deposited at VINITI (All-Russian Institute of Scientific and Technical Information for All-Union Institute of Scientific and Technical Information No. 1674-81Dep., 94 pages (1981). Math. Review number not available.
  21. Pinelis, I. F. Asymptotic equivalence of the probabilities of large deviations for sums and maximum of independent random variables. (Russian). Limit theorems of probability theory, 144--173, 176, Trudy Inst. Mat. 5 (1985) ``Nauka'' Sibirsk. Otdel., Novosibirsk. Math. Reviews 0821760
  22. Pinelis, I. Extremal probabilistic problems and Hotelling's T2 test under a symmetry condition. Ann. Statist. 22 (1994), 357--368. Math. Reviews 1272088
  23. Pinelis, I. Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22 (1994), 1679--1706. Math. Reviews 1331198
  24. Pinelis, I. Optimal tail comparison based on comparison of moments. High dimensional probability (Oberwolfach, 1996). Progr. Probab. 43 (1998), 297--314. Math. Reviews 1652335
  25. Pinelis, I. Fractional sums and integrals of r-concave tails and applications to comparison probability inequalities. Advances in stochastic inequalities (Atlanta, GA, 1997). Contemp. Math. 234 (1999), 149--168. Math. Reviews 1694770
  26. Pinelis, I. On exact maximal Khinchine inequalities. High dimensional probability, II (Seattle, WA, 1999). Progr. Probab. 47 (2000), 49--63. Math. Reviews 1857314
  27. Pinelis, I. L'Hospital type rules for oscillation, with applications. J. Inequal. Pure Appl. Math. 2 (2001), 3, Article 33, 24 pp. (electronic). Math. Reviews 1876266
  28. Pinelis, I. L'Hospital type rules for monotonicity: applications to probability inequalities for sums of bounded random variables. J. Inequal. Pure Appl. Math. 3 (2001), 1, Article 7, 9 pp. (electronic). Math. Reviews 1888922
  29. Pinelis, I. Binomial upper bounds on generalized moments and tail probabilities of (super)martingales with differences bounded from above. IMS Lecture NotesMonograph Series. High Dimensional Probability. 51 (2006), DOI: 10.1214/074921706000000743. To appear. Math. Reviews number not available.
  30. Pinelis, I. On inequalities for sums of bounded random variables. Preprint, 2006. Math. Reviews number not available.
  31. Pinelis, I. Toward the best constant factor for the Rade-macher-Gaussian tail comparison. Preprint, 2006. Math. Reviews number not available.
  32. Pinelis, I. Toward the best constant factor for the Rade-macher-Gaussian tail comparison. Preprint, 2006. Math. Reviews number not available.
  33. Pinelis, I.; Sakhanenko, A. I. emarks on inequalities for probabilities of large deviations. Theory Probab. Appl. 30 (1985), 143--148. Math. Reviews 0779438
  34. Shorack, G. R. and Wellner, J. A. Empirical Processes with Applications to Statistics. (1986) Wiley, New York. Math. Reviews 0838963
  35. Talagrand, M. Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes tudes Sci. Publ. Math. No. 81 (1995), 73--205. Math. Reviews 1361756
  36. Whittle, P. Bounds for the moments of linear and quadratic forms in independent variables. Teor. Verojatnost. i Primenen.. 5 (1960), 331--335. Math. Reviews 0133849
  37. Yurinskii, V. V. (Jurinskiui, V. V.) Exponential estimates for large deviations. (Russian) Teor. Verojatnost. i Primenen.. 19 (1974), 152--154. Math. Reviews 334298
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489