Evolution of the interfaces in a two dimensional Potts model
Glauco Valle, UFRJ
Abstract
We investigate the evolution of the random interfaces in a two dimensional Potts model at zero temperature under Glauber dynamics for some particular initial conditions. We prove that under space-time diffusive scaling the shape of the interfaces converges in probability to the solution of a non-linear parabolic equation. This Law of Large Numbers is obtained from the Hydrodynamic limit of a coupling between an exclusion process and an inhomogeneous one dimensional zero range process with asymmetry at the origin.
D. Aldous. Stopping times and tightness.
Ann. Prob.6 (1978), 335-340.
MR0474446
L. Chayes, G. Swindle.
Hydrodynamic limits for one-dimensional particle systems with moving boundaries.
Ann. Prob.24 (1996), 559–598.
MR1404521
M. Guo, S. Papanicolaou, S. Varadhan.
Nonlinear diffusion limit for a system with nearest neighbor interactions.
Comm. Math. Phys.118 (1988), 31-59 .
MR0954674
C. Kipnis.
CLT for series of queues and tagged particle.
Ann. Prob.14 (1986), 397-408.
MR0832016
C. Kipnis, C. Landim.
Scaling Limits of Interacting Particle Systems. Springer-Verlag (1997).
MR1707314
O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Ural'ceva.
Linear and Quasilinear equations of parabolic type. Translations of Mathematical Monographs 23 (1968).
MR0241822
C. Landim, S. Olla, S. Volchan.
Driven Tracer Particle and Einstein Relation in One Dimensional Symmetric Simple Exclusion Process.
Resenhas IME-USP3(2) (1997), 173-209.
MR1601904
C. Landim, S. Olla, S. Volchan.
Driven Tracer Particle in One Dimensional Symmetric Simple Exclusion.
Commun. Math. Phys.192 (1998), 287-307.
MR1617558
C. Landim, G. Valle.
A microscopic model for Stefan's melting and freezing problem.
Ann. Prob.34 (2006), 779-803.
MR2223958
T. Liggett.
Interacting Particle Systems. Springer-Verlag (1985).
MR0776231
F. Wu.
The Potts model.
Reviews of Modern Physics54 (1982), 235–268.
MR0641370