|
|
|
| | | | | |
|
|
|
|
|
Random Walk on Periodic Trees
|
Christiane Takacs, Universität Linz |
Abstract
Following Lyons (1990, Random Walks and Percolation on Trees) we define a
periodic tree, restate its
branching number and consider a biased random walk on it. In the case of a
transient walk, we describe the walk-invariant random periodic tree and
calculate the asymptotic rate of escape (speed) of the walk. This is
achieved by exploiting the connections between random walks and electric
networks.
|
Full text: PDF
Pages: 1-16
Published on: January 3, 1997
|
Bibliography
-
Alili, S. (1994). Comportement asymptotique d'une marche
alèatoire en environnement alèatoire, C. R. Acad. Sci. Paris, t. 319,
Sèrie I, 1207-1212.
Math Review link
-
Bunde, A. (1986) et al. Diffusion in random structures with a
topological bias, Physical Review B, 34 (11), 8129-8132.
Math Review number not available.
-
Doyle, P., Snell, L. (1984).
Random Walk and Electric Networks,
Mathematical Association of America.
Math Review number not available.
- Lyons, R. (1990). Random Walks and Percolation on Trees, Ann.
Prob. 18, 931-958.
Math Review link
-
Lyons, R. (1992). Random Walks, Capacity and Percolation on
Trees, Ann.Prob. 20, 2043-2088.
Math Review link
-
Lyons, R., Pemantle, R., Peres, Y. (1995). Ergodic theory on
Galton-Watson trees: speed of random walk and dimension of harmonic measure,
Ergod. Th. & Dynam. Sys, 15, 593-619.
Math Review link
-
Lyons, R., Pemantle, R., Peres, Y. (1996). Unsolved Problems
concerning Random Walks on Trees,
Classical and Modern Branching Processes,
K. Athreya and P. Jagers (editors), Springer, New York, to appear.
Math Review number not available.
-
Lyons, R., Pemantle, R., Peres, Y. (1996). Biased Random
Walks on Galton-Watson trees, Probab. Th. Rel. Fields, to appear.
Math Review number not available.
-
Petersen, K. (1983).
Ergodic Theory,
Cambridge University Press,
Cambridge London New York New Rochelle Melbourne Sidney.
Math Review number not available.
-
Rosenblatt, M. (1971).
Markov Processes, Structure and Asymptotic Behaviour,
Springer, Berlin Heidelberg New York.
Math Review number not available.
-
Solomon, F. (1975). Random Walks in a Random Environment, Ann.
Prob. 3, 1-31.
Math Review link
-
Tetali, P. (1991). Random Walks and the Effective Resistance of
Networks, J. Theor. Prob. 4, 101-109.
Math Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|