![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Symbol Associated with the Solution of a Stochastic Differential Equation
|
Rene L. Schilling, TU Dresden Alexander Schnurr, TU Dortmund |
Abstract
We consider stochastic differential equations which are driven by multidimensional Levy processes. We show that the infinitesimal generator of the solution is a pseudo-differential operator whose symbol is calculated explicitely. For a large class of Feller processes many properties of the sample paths can be derived by analysing the symbol. It turns out that the solution of the SDE under consideration is a Feller process if the coefficient of the SDE is bounded and that the symbol is of a particulary nice structure.
|
Full text: PDF
Pages: 1369-1393
Published on: September 18, 2010
|
Bibliography
- Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge 2009 (2nd ed). MR2512800
- Bass, R. F.: Uniqueness in Law for Pure Jump Type Markov
Processes. Probab. Theory Relat. Fields 79 (1988),
271-287. MR0958291 (89h:60118)
- Berg, C. and Forst, G.: Potential Theory on Locally Compact Abelian Groups, Springer-Verlag, Berlin 1975. MR0481057 (58 #1204)
- Blumenthal, R. M. and Getoor, R. K.: Markov Processes and Potential Theory, Academic Press, New York 1968. MR0264757 (41 #9348)
- Böttcher, B. and Schilling, R. L.: Approximation of Feller
processes by Markov chains with Lévy increments. Stochastics
and Dynamics 9 (2009) 71-80. MR2502474 (2010h:60220)
- Cinlar, E., Jacod, J., Protter, P., and Sharpe, M. J.:
Semimartingales and Markov processes. Z.
Wahrscheinlichkeitstheorie verw. Geb., 54 (1980),
161-219. MR0597337 (82h:60084)
- Courrège, P.: Sur la forme intégro-différentielle des
opéateurs de ${C}_k^infty$ dans ${C}$ satisfaisant au principe du
maximum. Sém. Théorie du potentiel (1965/66) Exposé 2,
38pp.
- DeVore, R.: Nonlinear Approximation. Acta Numerica 7 (1998), 51-150. MR1689432 (2001a:41034)
- Hoh, W.: A symbolic calculus for pseudo differential operators
generating Feller semigroups, Osaka J. Math. 35
(1998), 798-820. MR1659620 (99k:47102)
- Hoh, W.: Pseudo differential operators with negative definite
symbols of variable order, Rev. Mat. Iberoam. 16
(2000), 219-241. MR1809340 (2002d:47070)
- Hoh, W., On perturbations of pseudo differential operators with
negative definite symbol, Appl. Anal. Optimization 45
(2002), 269-281. MR1885821 (2002k:35328)
- Ikeda, N. and Watanabe, S.: Stochastic Differential
Equations and Diffusion Processes. North Holland, Amsterdam 1989 (2nd
ed). MR1011252 (90m:60069)
- Jacob, N. and Schilling, R. L.: An analytic proof of the
Lévy-Khinchin formula on $R^n$. Publ. Math. Debrecen 53 (1998), 69-89. MR1661006 (99j:42013)
- Jacob, N. and Schilling, R. L.: Lévy-type processes and
pseudo differential operators. In: Barndorff-Nielsen, O. E. et al.
(eds.): Lévy Processes: Theory and Applications, Birkhäuser,
Boston 2001, 139-168. MR1833696 (2002c:60077)
- Jacob, N.: Pseudo Differential Operators and Markov
Processes. Vol. 1: Fourier Analysis and Semigroups, Imperial College
Press, London 2001. MR1873235 (2003a:47104)
- Jacob, N.: Pseudo Differential Operators and Markov
Processes. Vol. 2: Generators and their Potential Theory, Imperial
College Press, London 2002. MR1917230 (2003k:47077)
- Jacob, N.: Pseudo Differential Operators and Markov
Processes. Vol. 3: Markov Processes and Applications, Imperial
College Press, London 2005. MR2158336 (2006i:60001)
- Jacod, J. and Shiryaev, A.: Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin 1987. MR0959133 (89k:60044)
- Jacod, J. and Protter, P.: Une remarque sur les équation
différencielles stochastiques à solution markoviennes. In: Séminaire de Probabilitès XXV, Lecture Notes in Mathematics
vol. 1485, Berlin 1991, 138-139. MR1187777 (93m:60133)
- Kaßmann, M.: A priori estimates for integro-differential
operators with measurable kernels. Calc. Var. Partial Differ.
Equ. 34 (2009), 1-21. MR2448308 (2010b:35474)
- Manstavicius, M.: p-variation of strong Markov processes. Ann. Probab. 34 (2004), 2053-2066. MR2073185 (2005f:60095)
- Métivier, M.: Semimartingales. A Course on Stochastic Processes. Walter de Gruyter, Berlin 1982. MR0688144 (84i:60002)
- Protter, P.: Markov Solutions of stochastic differential
equations. Z. Wahrscheinlichkeitstheorie verw. Geb. 41 (1977), 39-58. MR0477420 (80i:60085)
- Protter, P.: Stochastic Integration and Differential Equations. Springer-Verlag, Berlin 2005 (2nd ed). MR2273672 (2008e:60001)
- Revuz, D. and Yor, M.: Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin 1999 (3rd ed). MR1725357 (2000h:60050)
- Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge 1999. MR1739520 (2003b:60064)
- Schilling, R. L.: Conservativeness and extensions of Feller semigroups. Positivity 2 (1998), 239-256. MR1653474 (2000c:47085)
- Schilling, R. L.: Growth and Hölder conditions for the sample
paths of Feller processes. Probab. Theory Rel. Fields 112 (1998), 565-611. MR1664705 (99m:60131)
- Schilling, R. L.: Function spaces as path spaces of Feller processes, Math. Nachr. 217 (2000), 147-174. MR1780776 (2003c:60122)
- Schnurr, A.: The Symbol of a Markov Semimartingale. PhD thesis, TU Dresden 2009.
- Triebel, H.: The Theory of Function Spaces I, II, III. Birkhäuser, Basel 1983-2006.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|