![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Two Coalescents Derived from the Ranges of Stable Subordinators
|
Jean Bertoin, Université Paris VI Jim Pitman, University of California, Berkeley |
Abstract
Let $M_alpha$ be the closure of the range of a stable subordinator of
index $alphain ]0,1[$.
There are two natural constructions of the $M_{alpha}$'s simultaneously for
all $alphain ]0,1[$, so that
$M_{alpha}subseteq M_{beta}$ for $0< alpha < beta <
1$: one based on the intersection of independent regenerative sets and one
based on Bochner's subordination.
We compare the corresponding two coalescent processes defined by the lengths
of complementary intervals of $[0,1]backslash M_{1-rho}$ for $0 < rho < 1$.
In particular, we identify the coalescent based on the subordination scheme
with the coalescent recently introduced by Bolthausen and Sznitman.
|
Full text: PDF
Pages: 1-17
Published on: November 10, 1999
|
Bibliography
-
D. J. Aldous and J. Pitman. The standard additive coalescent.
Ann. Probab., 26:1703-1726, 1998.
Math. Review number not available.
-
J. Bertoin.
Renewal theory for embedded regenerative sets.
Ann. Probab. , 27:1523--1535, 1999.
Math. Review number not available.
-
J. Bertoin.
A fragmentation process related to Brownian motion.
To appear in Probab. Theory Relat. Fields 1999.
Math. Review number not available.
-
J. Bertoin and J. F. Le Gall.
The Bolthausen-Sznitman coalescent and the genealogy of
continuous-state branching processes. To appear in
Probab. Theory Relat. Fields 1999.
Math. Review number not available.
-
S. Bochner.
Harmonic analysis and the theory of probability.
University of California Press, Berkeley and Los Angeles, 1955.
Math. Review 17,273d .
-
E. Bolthausen and A.-S. Sznitman.
On Ruelle's probability cascades and an abstract cavity method.
Comm. Math. Phys., 197(2):247-276, 1998.
Math. Review 99k:60244.
-
E. B. Dynkin.
Some limit theorems for sums of independent random variables with
infinite mathematical expectations.
IMS-AMS Selected Translations in Math. Stat. and Prob.,
1:171-189, 1961.
Math. Review 17,865b.
-
S. N. Evans and J. Pitman.
Construction of Markovian coalescents.
Ann. Inst. Henri Poincaré , 34:339-383, 1998.
Math. Review 99k:60184 .
-
P. J. Fitzsimmons, B. Fristedt, and L. A. Shepp.
The set of real numbers left uncovered by random covering
intervals. Z. Wahrscheinlichkeitstheorie verw. Gebiete
70:175 - 189, 1985.
Math. Review 86k:60017.
-
K. Itô. Poisson point processes attached to Markov processes.
In Proc. 6th Berk. Symp. Math. Stat. Prob., volume 3, pages
225-240, 1971.
Math. Review 53 #6763.
-
J. F. C. Kingman. The coalescent.
Stochastic Process. Appl. , 13:235-248, 1982.
Math. Review 84a:60079.
-
J. F. C. Kingman. On the genealogy of large populations.
In J. Gani and E. J. Hannan, editors, Essays in Statistical
Science , volume 19A of J. Appl. Probab. Special vol. 1,
pages 27-43, 1982.
Math. Review 83d:92043.
-
G. Matheron.
Random Sets and Integral Geometry.
John Wiley and Sons, New York-London-Sydney, 1975.
Math. Review 52 #6828.
-
S. A. Molchanov and E. Ostrovskii.
Symmetric stable processes as traces of degenerate diffusion
processes.
Theor. Prob. Appl. , 14, No. 1:128-131, 1969.
Math. Review 40 #931.
-
J. Pitman.
Cyclically stationary Brownian local time processes.
Probab. Th. Rel. Fields, 106:299-329, 1996.
Math. Review 98d:60152.
-
J. Pitman.
Coalescents with multiple collisions.
To appear in Ann. Probab. Math. Review number not available.
-
J. Pitman.
Partition structures derived from Brownian motion and stable
subordinators.
Bernoulli , 3:79-96, 1997.
Math. Review 99c:60078.
-
J. Pitman and M. Yor.
A decomposition of Bessel bridges.
Z. Wahrscheinlichkeitstheorie verw. Gebiete , 59:425-457, 1982.
Math. Review 84a:60091.
-
J. Pitman and M. Yor.
Arcsine laws and interval partitions derived from a stable
subordinator. Proc. London Math. Soc. , 65:326-356, 1992.
Math. Review 93e:60152.
-
J. Pitman and M. Yor.
Random discrete distributions derived from self-similar random
sets. Electronic J. Probability ,
1:Paper 4,
1-28, 1996.
Math. Review 98i:60010.
-
J. Pitman and M. Yor.
The two-parameter Poisson-Dirichlet distribution derived from a
stable subordinator. Ann. Probab. , 25:855-900, 1997.
Math. Review 98f:60147.
-
L. C. G. Rogers and J. Pitman.
Markov functions.
Ann. Probab , 9:573-582, 1981.
Math. Review 82j:60133 .
-
T. Shiga and S. Watanabe.
Bessel diffusions as a one-parameter family of diffusion processes.
Z. Wahrscheinlichkeitstheorie verw. Gebiete , 27:37-46, 1973.
Math. Review 51 #4433 .
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|