![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Sufficient Conditions for Torpid Mixing of Parallel and Simulated Tempering
|
Dawn B Woodard, Cornell University Scott C Schmidler, Duke Universtity Mark Huber, Duke University |
Abstract
We obtain upper bounds on the spectral gap of Markov chains
constructed by parallel and simulated tempering, and provide a set of
sufficient conditions for torpid mixing of both techniques. Combined
with the results of Woodard, Schmidler and Huber (2009), these results
yield a two-sided bound on the spectral gap of these algorithms. We
identify a persistence property of the target distribution, and
show that it can lead unexpectedly to slow mixing that commonly used
convergence diagnostics will fail to detect. For a multimodal
distribution, the persistence is a measure of how ``spiky'', or tall
and narrow, one peak is relative to the other peaks of the
distribution. We show that this persistence phenomenon can be used to
explain the torpid mixing of parallel and simulated tempering on the
ferromagnetic mean-field Potts model shown previously. We also
illustrate how it causes torpid mixing of tempering on a mixture of
normal distributions with unequal covariances in R^M, a previously
unknown result with relevance to statistical inference problems. More
generally, anytime a multimodal distribution includes both very narrow
and very wide peaks of comparable probability mass, parallel and
simulated tempering are shown to mix slowly.
|
Full text: PDF
Pages: 780-804
Published on: March 31, 2009
|
Bibliography
- Banerjee, Sudipto; Carlin, Brad P.; Gelfand, Alan E. Hierarchical Modeling and Analysis for Spatial Data, Chapman and Hall, Boca Raton, FL, 2004. Math. Review number not available.
- Bhatnagar, Nayantara; Randall, Dana. Torpid mixing of simulated tempering on the Potts model. Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 478--487 (electronic), ACM, New York, 2004. MR2291087
- Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (1984), 721--741. Math. Review number not available.
- Geyer, C. J. Markov chain Monte Carlo maximum likelihood. In Computing Science and Statistics, Volume 23: Proceedings of the 23rd Symposium on the Interface, E. Keramidas, Ed., 156--163, Interface Foundation of North America, Fairfax Station, VA, 1991. Math. Review number not available.
- Geyer, C. J.; Thompson, E. A. Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90 (1995), 909--920. Math. Review number not available.
- Gore, Vivek K.; Jerrum, Mark R. The Swendsen-Wang process does not always mix rapidly. J. Statist. Phys. 97 (1999), no. 1-2, 67--86. MR1733467 (2001f:82046)
- Green, Peter J.; Richardson, Sylvia. Hidden Markov models and disease mapping. J. Amer. Statist. Assoc. 97 (2002), no. 460, 1055--1070. MR1951259
- Kannan, Ravi; Li, Guangxing. Sampling according to the multivariate normal density. 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), 204--212, IEEE Comput. Soc. Press, Los Alamitos, CA, 1996. MR1450618
- Lawler, Gregory F.; Sokal, Alan D. Bounds on the $Lsp 2$ spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality. Trans. Amer. Math. Soc. 309 (1988), no. 2, 557--580. MR0930082 (89h:60105)
- Madras, Neal; Randall, Dana. Markov chain decomposition for convergence rate analysis. Ann. Appl. Probab. 12 (2002), no. 2, 581--606. MR1910641 (2003d:60135)
- Madras, Neal; Slade, Gordon. The self-avoiding walk. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1993. xiv+425 pp. ISBN: 0-8176-3589-0 MR1197356 (94f:82002)
- Madras, Neal; Zheng, Zhongrong. On the swapping algorithm. Random Structures Algorithms 22 (2003), no. 1, 66--97. MR1943860 (2004c:82117)
- Marinari, E. ; Parisi, G. Simulated tempering: a new Monte Carlo scheme. Europhysics Letters 19 (1992), 451--458. Math. Review number not available.
- Matthews, Peter. A slowly mixing Markov chain with implications for Gibbs sampling. Statist. Probab. Lett. 17 (1993), no. 3, 231--236. MR1229942 (94b:60079)
- Predescu, C. ; Predescu, M. ; Ciobanu, C. V. The incomplete beta function law for parallel tempering sampling of classical canonical systems. J. Chem. Phys. 120 (2004), 4119--4128. Math. Review number not available.
- Roberts, Gareth O.; Rosenthal, Jeffrey S. General state space Markov chains and MCMC algorithms. Probab. Surv. 1 (2004), 20--71 (electronic). MR2095565 (2005i:60135)
- Roberts, G. O.; Tweedie, R. L. Rates of convergence of stochastically monotone and continuous time Markov models. J. Appl. Probab. 37 (2000), no. 2, 359--373. MR1780996 (2001i:60111)
- Schmidler, S. C.; Woodard, D. B. Computational complexity and Bayesian analysis, In preparation. Math. Review number not available.
- Tierney, Luke. Markov chains for exploring posterior distributions. With discussion and a rejoinder by the author. Ann. Statist. 22 (1994), no. 4, 1701--1762. MR1329166 (96m:60150)
- Woodard, D. B. Conditions for rapid and torpid mixing of parallel and simulated tempering on multimodal distributions. Ph.D. thesis, Duke University, 2007. Math. Review number not available.
- Woodard, D. B. Detecting poor convergence of posterior samplers due to multimodality. Discussion Paper 2008-05, Duke University, Dept. of Statistical Science, 2008. Math. Review number not available.
- Woodard, D. B. , Schmidler, S. C. , Huber, M. Conditions for rapid mixing of parallel and simulated tempering on multimodal distributions. In press, Annals of Applied Probability, 2009. Math. Review number not available.
- Yuen, W. K. Application of geometric bounds to convergence rates of Markov chains and Markov processes on R^n, Ph.D. thesis, University of Toronto, 2001. Math. Review number not available.
- Zheng, Zhongrong. On swapping and simulated tempering algorithms. Stochastic Process. Appl. 104 (2003), no. 1, 131--154. MR1956476 (2003m:60197)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|