![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The time constant vanishes only on the percolation cone in directed first passage percolation
|
Yu Zhang, University of Colorado |
Abstract
We consider the directed first passage percolation model on ${bf Z}^2$.
In this model, we assign independently to each edge $e$ a passage time $t(e)$
with a common distribution $F$.
We denote by
$vec{T}({bf 0}, (r,theta))$
the passage time from the origin to $(r, theta)$ by a northeast path for
$(r, theta)in {bf R}^+times [0,pi/2]$. It is known that
$vec{T}({bf 0}, (r, theta))/r$ converges to a time constant $vec{mu}_F (theta)$.
Let $vec{p}_c$ denote the critical probability for oriented percolation.
In this paper, we show that the time constant has a phase transition at $vec{p}_c$, as follows:
(1) If $F(0) < vec{p}_c$, then $vec{mu}_F(theta) >0$ for all
$0leq thetaleq pi/2$.
(2) If $F(0) = vec{p}_c$, then $vec{mu}_F(theta) >0$ if and only if $thetaneq pi/4$.
(3) If $F(0)=p > vec{p}_c$, then there exists a percolation cone between $theta_p^-$ and $theta_p^+$ for
$0leq theta^-_p< theta^+_p leq pi/2$ such that $vec{mu} (theta) >0$ if and only if $thetanotin [theta_p^-, theta^+_p]$. Furthermore, all the moments of $vec{T}({bf 0}, (r, theta))$ converge whenever $thetain [theta_p^-, theta^+_p]$.
As applications, we describe the
shape of the directed growth model on the distribution of $F$. We give a phase transition for the shape at $vec{p}_c$
|
Full text: PDF
Pages: 2264-2286
Published on: October 16, 2009
|
Bibliography
- Alexander, Kenneth S. Approximation of subadditive functions and convergence rates in limiting-shape results. Ann. Probab. 25 (1997), no. 1, 30--55. MR1428498 (98f:60203)
- Bezuidenhout, Carol; Grimmett, Geoffrey. The critical contact process dies out. Ann. Probab. 18 (1990), no. 4, 1462--1482. MR1071804 (91k:60111)
- Chayes, J. T.; Chayes, L.; Durrett, R. Critical behavior of the two-dimensional first passage time. J. Statist. Phys. 45 (1986), no. 5-6, 933--951. MR0881316 (88f:60175)
- Cox, J. Theodore; Kesten, Harry. On the continuity of the time constant of first-passage percolation. J. Appl. Probab. 18 (1981), no. 4, 809--819. MR0633228 (83a:60171)
- Durrett, Richard. Oriented percolation in two dimensions. Ann. Probab. 12 (1984), no. 4, 999--1040. MR0757768 (86g:60117)
- Durrett, R. and Liggett, T. (1981). The shape of the limit set in Richardson's growth model. Ann. Probab. 9, 186--193.
- Grimmett, Geoffrey. Percolation.Second edition.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339 (2001a:60114)
- Hammersley, J. M.; Welsh, D. J. A. First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. 1965 Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. pp. 61--110 Springer-Verlag, New York MR0198576 (33 #6731)
- Kesten, Harry. Aspects of first passage percolation. École d'été de probabilités de Saint-Flour, XIV---1984, 125--264, Lecture Notes in Math., 1180, Springer, Berlin, 1986. MR0876084 (88h:60201)
- Kesten, Harry; Zhang, Yu. The probability of a large finite cluster in supercritical Bernoulli percolation. Ann. Probab. 18 (1990), no. 2, 537--555. MR1055419 (91i:60278)
- Kesten, Harry; Zhang, Yu. A central limit theorem for ``critical'' first-passage percolation in two dimensions. Probab. Theory Related Fields 107 (1997), no. 2, 137--160. MR1431216 (97m:60151)
- Marchand, R. Strict inequalities for the time constant in first passage percolation. Ann. Appl. Probab. 12 (2002), no. 3, 1001--1038. MR1925450 (2003m:60283)
- Martin, James B. Limiting shape for directed percolation models. Ann. Probab. 32 (2004), no. 4, 2908--2937. MR2094434 (2005i:60198)
- Smythe, R. T.; Wierman, John C. First-passage percolation on the square lattice.Lecture Notes in Mathematics, 671. Springer, Berlin, 1978. viii+196 pp. ISBN: 3-540-08928-4 MR0513421 (80a:60135)
- Talagrand, Michel. Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. No. 81 (1995), 73--205. MR1361756 (97h:60016)
- Yukich, J. E.; Zhang, Yu. Singularity points for first passage percolation. Ann. Probab. 34 (2006), no. 2, 577--592. MR2223952 (2007d:60068)
- Zhang, Yu. Supercritical behaviors in first-passage percolation. Stochastic Process. Appl. 59 (1995), no. 2, 251--266. MR1357654 (96k:60261)
- Zhang, Yu. Double behavior of critical first-passage percolation. Perplexing problems in probability, 143--158, Progr. Probab., 44, Birkhäuser Boston, Boston, MA, 1999. MR1703129 (2000i:60119)
- Zhang, Yu. The divergence of fluctuations for shape in first passage percolation. Probab. Theory Related Fields 136 (2006), no. 2, 298--320. MR2240790 (2007e:60096)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|