![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Curve Crossing for the Reflected Levy Process at Zero and Infinity
|
Mladen Svetoslavov Savov, The University of Manchester |
Abstract
Let Rt be a Levy process reflected in its maximum. We give
necessary and sufficient conditions for finiteness of passage times above power
law boundaries at infinity. Information as to when the expected passage time for
Rt is finite, is given. We also discuss the almost sure finiteness of
limsup
Rt/tk, for each k>=0.
|
Full text: PDF
Pages: 157-172
Published on: January 30, 2008
|
Bibliography
-
Asmussen, S., Avram, F. and Pistorius, M. (2004)
Russian and American put options under exponential phase-type Lévy models.
Stochastic Process. Appl. 109, No.1, 79-111.
Math. Review MR2024845 (2004m:91096)
-
Bertoin, J. Lévy
Processes. Cambridge University Press, (1996).
Math.Review 1406564 (98e:60117)
-
Bertoin, J., Doney, R. A. and Maller, R. A. (2008)
Passage of Lévy processes across power law boundaries at small times.
Annals of Probability 36, No.1, 160-197
Math.Review number not available
-
Chow, Y. S. and Teicher, H.
Probability Theory: Independence, Interchangeability,
Martingales. Springer-Verlag 1978.
Math.Review 0513230 (80a:60004)
-
Doney, R. A. and Maller, R. A. (2007)
Curve crossing for random walks reflected at their maximum.
Ann. Probab. 35, No.1, 1351-1373.
Math.Review 2330975
-
Doney, R. A. and Maller, R. A. (2005) Passage times of random walks and Lévy processes across power law boundaries.
Probab. Theory Related Fields 133 , No. 1, 57-70.
Math. Review 2197137( 2007f:60038)
-
Doney, R. A. (2004) Stochastic bounds for Lévy processes. Ann.
Prob. 32, No.2, 1545-1552.
Math. Review 2060308 (2005k:60147)
-
Khintchine, A. Ya. (1939) Sur la croissance locale des processes stochastiques homogenes a accroissements independants.
Izv. Akad. Nauk SSSR 3, 487-508.
Math.Review number not availabe
-
Protter P. Stochastic Integration and Differential Equations.
Springer-Verlag, first edition, 1990.
Math. Review 1037262 (91i:60148)
-
Rogozin, B. A. (1968)
Local behavior of processes with independent increments.
Theory Probab. Appl. 16, 575-595.
Math. Review 0242261 (39 #3593)
-
Sato, K. (1999)
Lévy Processes and Infinitely Divisible Distributions.
Cambridge University Press, Cambridge.
Math. Review 1739520 (2003b:60064)
-
Savov, M. (2008) Asymptotic behavior of Lévy processes. Phd
Thesis, The University of Manchester, to be submitted.
-
Shepp, L. A. and Shiryaev, A. N. (1993). The Russian Option: reduced
regret. Ann. Appl. Probab. 3, No.3, 631-640.
Math. Review 1233617 (94i:90027)
-
Shepp, L. A. and Shiryaev, A. N. (1996). A dual Russian option for selling short.
Probability Theory and Mathematical Statistics (A. Ibragimov and A. Yu. Zaitsev, eds.) 209-218. Gordon and Breach, Amsterdam.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|