|
|
|
| | | | | |
|
|
|
|
|
Two-sided Estimates on the Density of the Feynman-Kac Semigroups of Stable-like Processes
|
Renming Song, University of Illinois |
Abstract
In this paper we establish two-sided estimates for the density of
the Feynman-Kac semigroups of stable-like processes with potentials
given by signed measures belonging to the Kato class. We also provide
similar estimates for the densities of two other kinds of
Feynman-Kac semigroups of stable-like processes.
|
Full text: PDF
Pages: 146--161
Published on: February 25, 2006
|
Bibliography
-
S. Albeverio and Z. M. Ma.
Perturbation of Dirichlet forms--lower semiboundedness,
closability and form cores.
J. Funct. Anal. 99 (1991), 332--356.
Math. Review 92i:47039
-
Ph. Blanchard and Z. M. Ma.
Semigroup of Schr"odinger operators with potentials given
by Radon measures.
In Stochastic processes, physics
and geometry. 160--194, World Sci. Publishing, Teaneck, NJ, 1990.
Math. Review 93a:35034
-
R. M. Blumenthal and R. K. Getoor.
Some theorems on stable processes.
Trans. Amer. Math. Soc. 95 (1960), 263--273.
Math. Review 0119247
- Z.-Q. Chen and T. Kumagai.
Heat kernel estimates for stable-like processes on $d$-sets.
Stochastic Process. Appl. 108 (2003), 27--62.
Math. Review 2005d:60135
- Z.-Q. Chen and R. Song.
Intrinsic ultracontractivity and conditional gauge for symmetric
stable processes.
J. Funct. Anal. 150 (1997), 204--239.
Math. Review 98j:60103
-
Z.-Q. Chen and R. Song.
Conditional gauge theorem for non-local Feynman-Kac
transforms.
Probab. Th. rel. Fields 125 (2003), 45--72.
Math. Review 2003m:60213
- Z.-Q. Chen and T. Zhang.
Girsanov and Feynman-Kac type transformations for symmetric
Markov processes.
Ann. Inst. H. Poincar'e Probab. Statist.
38 (2002), 475--505.
Math. Review 2004e:60128
-
M. Fukushima.
On a decomposition of additive functionals in the strict sense
for a symmetric Markov process.
In Dirichlet forms and stochastic processes,
155--169, de Gruyter, Berlin, 1995.
Math. Review 97k:60210
-
M. Fukushima, Y. Oshima and M. Takeda.
Dirichlet forms and symmetric Markov processes,
Walter De Gruyter, Berlin, 1994.
Math. Review 96f:60126
-
M. Sharpe.
General Theory of Markov Processes,
Academic Press, Boston, 1988.
Math. Review 89m:60169
- B. Simon.
Schr"odinger semigroups.
Bull. Amer. Math. Soc. (N.S.) ,
7 (1982), 447--526.
Math. Review 86b:81001a
- R. Song.
Feynman-Kac semigroup with discontinuous additive functionals.
J. Theoret. Probab. 8 (1995), 727--762.
Math. Review 97a:60106
- Qi S. Zhang.
A Harnack inequality for the equation
$nabla(anabla u)+bnabla u=0$, when $vert bvert in Ksb {n+1}$.
Manuscripta Math. 89 (1996), 61--77.
Math. Review 97a:35045
- Qi S. Zhang.
Gaussian bounds for the fundamental
solutions of $nabla (Anabla u)+Bnabla u-usb t=0$.
Manuscripta Math. 93 (1997), 381--390.
Math. Review 98c:35067
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|