![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Strong limit theorems for a simple random walk on the 2-dimensional comb
|
Endre Csáki, A. Rényi Institute, Hungary Miklós Csörgő, Carleton University, Ottawa, Canada Antónia Földes, College of Staten Island, CUNY, New York Pál Révész, Technical University, Vienna, Austria |
Abstract
We study the path behaviour of a simple random walk on the 2-dimensional
comb lattice C2 that is obtained from Z2 by
removing all horizontal edges off the x-axis. In particular, we prove
a strong approximation result for such a random walk which, in turn,
enables us to establish strong limit theorems, like the joint
Strassen type law of the iterated logarithm of its two components, as
well as their marginal Hirsch type behaviour.
|
Full text: PDF
Pages: 2371-2390
Published on: November 1, 2009
|
Bibliography
-
D. Bertacchi.
Asymptotic behaviour of the simple random walk on the 2-dimensional comb.
Electron. J. Probab. 11 (2006), 1184-1203.
MR2268542 (2007m:60210)
-
D. Bertacchi and F. Zucca.
Uniform asymptotic estimates of transition probabilities on combs.
J. Aust. Math. Soc. 75 (2003), 325-353.
MR2015321 (2004i:60103)
-
J. Bertoin.
Iterated Brownian motion and stable $(frac14)$ subordinator.
Statist. Probab. Lett. 27 (1996), 111-114.
MR1399993 (97e:60134)
-
A.N. Borodin.
On the character of convergence to Brownian local time I.
Probab. Theory Related Fields 72 (1986), 231-250.
MR0836277 (87i:60087)
-
A.N. Borodin and P. Salminen.
Handbook of Brownian Motion---Facts and Formulae, 2nd ed.
Birkhäuser Verlag, Basel, 2002.
MR1912205 (2003g:60001)
-
K.L. Chung.
On the maximum partial sums of sequences of independent random variables.
Trans. Amer. Math. Soc. 64 (1948), 205-233.
MR0026274 (10,132b)
-
E. Csáki, M. Csörgõ, A. Földes and P.
Révész.
Brownian local time approximated by a Wiener sheet.
Ann. Probab. 17 (1989), 516-537.
MR0985376 (90b:60102)
-
E. Csáki, M. Csörgõ, A. Földes and P.
Révész.
Strong approximation of additive functionals.
J. Theoret. Probab. 5 (1992), 679-706.
MR1182676 (93k:60073)
-
E. Csáki, M. Csörgõ, A. Földes and P.
Révész.
Global Strassen-type theorems for iterated Brownian motion.
Stochastic Process. Appl. 59 (1995), 321-341.
MR1357659 (97a:60111)
-
E. Csáki and A. Földes.
How big are the increments of the local time of a recurrent random walk?
Z. Wahrsch. verw. Gebiete 65 (1983), 307-322.
MR0722134 (85b:60027)
-
E. Csáki, A. Földes and P. Révész.
Strassen theorems for a class of iterated Processes.
Trans. Amer. Math. Soc. 349 (1997), 1153-1167.
MR1373631 (97f:60174)
-
M. Csörgõ, and P. Révész.
{Strong Approximations in Probability and Statistics.
Academic Press, New York, 1981.
MR0666546 (84d:60050)
-
R.L. Dobrushin.
Two limit theorems for the simplest random walk on a line (in Russian).
Uspehi Mat. Nauk (N.S.) 10 (1955), 139-146.
MR0071662 (17,166b)
-
W.M. Hirsch.
A strong law for the maximum cumulative sum of independent random
variables.
Comm. Pure Appl. Math. 18 (1965), 109-127.
MR0179828 (31 #4069)
-
N. Ikeda and S. Watanabe.
Stochastic Differential Equations and Diffusion Processes,
2nd ed. North-Holland, Amsterdam, 1989.
MR1011252 (90m:60069)
-
Y. Kasahara.
Limit theorems for Lévy processes and Poisson point processes and
their applications to Brownian excursions.
J. Math. Kyoto Univ. 24 (1984), 521-538.
MR0766640 (86i:60091)
-
M. Krishnapur and Y. Peres.
Recurrent graphs where two independent random walks collide finitely often.
Electron. Comm. Probab. 9 (2004), 72-81.
MR2081461 (2005h:60017)
-
P. Lévy.
Processus stochastiques et mouvement Brownien,
2nd ed. Gauthier-Villars, Paris, 1965.
MR0190953 (32 #8363)
-
E. Nane.
Laws of the iterated logarithm for a class of iterated processes.
Statist. Probab. Lett. 79 (2009), 1744-1751.
Math. Review number not available.
-
G. C. Papanicolaou, D. W. Stroock and S. R. S. Varadhan.
Martingale approach to some limit theorems.
Duke Univ. Maths. Series III. Statistical Mechanics and Dynamical
System, 1977.
MR0461684 (57 #1669)
-
P. Révész.
Local time and invariance.
Lecture Notes in Math. 861 (1981), 128-145.
Springer, New York.
MR0655268 (83j:60034)
-
P. Révész.
Random Walk in Random and Non-Random Environments,
2nd ed. World Scientific, Singapore 2005.
MR2168855 (2006e:60003)
-
F. Riesz and B. Sz.-Nagy.
Functional Analysis.
Frederick Ungar, New York, 1955.
MR0071727 (17,175i)
-
Z. Shi.
Liminf behaviours of the windings and Lévy's stochastic areas of
planar Brownian motion.
S'eminaire de Probabilit'es, XXVIII, Lecture Notes in Math.
1583 (1994), 122-137.
MR1329108 (96e:60148)
-
V. Strassen.
An invariance principle for the law of the iterated logarithm.
Z. Wahrsch. verw. Gebiete 3 (1964), 211-226.
MR0175194 (30 #5379)
-
G. H. Weiss and S. Havlin.
Some properties of a random walk on a comb structure.
Physica A 134 (1986), 474-482.
Math. Review number not available.
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|