|
|
|
| | | | | |
|
|
|
|
|
Ends in Uniform Spanning Forests
|
Russell Lyons, Indiana University Benjamin J. Morris, U. Calif., Davis Oded Schramm, Microsoft Research |
Abstract
It has hitherto been known that in a transitive unimodular graph,
each tree in the wired spanning forest has only one end a.s.
We dispense with the assumptions of transitivity and unimodularity,
replacing them with a much broader condition on the isoperimetric profile
that requires just slightly more than uniform transience.
|
Full text: PDF
Pages: 1702-1725
Published on: September 21, 2008
|
Bibliography
- Aldous, D.J. ; Lyons, R. (2007). Processes on unimodular random networks. Electron. J. Probab. 12, no. 54, 1454--1508 (electronic).
- Benjamini, I.; Lyons, R.; Peres, Y.; Schramm, O. Group-invariant percolation on graphs. Geom. Funct. Anal. 9 (1999), no. 1, 29--66. MR1675890 (99m:60149)
- Benjamini, Itai; Lyons, Russell; Peres, Yuval; Schramm, Oded. Uniform spanning forests. Ann. Probab. 29 (2001), no. 1, 1--65. MR1825141 (2003a:60015)
- Chen, Dayue; Peres, Yuval. Anchored expansion, percolation and speed.With an appendix by Gábor Pete. Ann. Probab. 32 (2004), no. 4, 2978--2995. MR2094436 (2005g:60022)
- Coulhon, Thierry; Saloff-Coste, Laurent. Isopérimétrie pour les groupes et les variétés.(French) [Isoperimetry for groups and manifolds] Rev. Mat. Iberoamericana 9 (1993), no. 2, 293--314. MR1232845 (94g:58263)
- Feder, T.; Mihail, M. (1992). Balanced matroids. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pages 26--38, New York. Association for Computing Machinery (ACM). Held in Victoria, BC, Canada.
- Gromov, Mikhael. Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. No. 53 (1981), 53--73. MR0623534 (83b:53041)
- Häggström, Olle. Random-cluster measures and uniform spanning trees. Stochastic Process. Appl. 59 (1995), no. 2, 267--275. MR1357655 (97b:60170)
- Häggström, Olle. Uniform and minimal essential spanning forests on trees. Random Structures Algorithms 12 (1998), no. 1, 27--50. MR1637387 (99i:05186)
- He, Zheng-Xu; Schramm, O. Hyperbolic and parabolic packings. Discrete Comput. Geom. 14 (1995), no. 2, 123--149. MR1331923 (96h:52017)
- Járai, Antal A.; Redig, Frank. Infinite volume limit of the abelian sandpile model in dimensions $dgeq 3$. Probab. Theory Related Fields 141 (2008), no. 1-2, 181--212. MR2372969
- Kirchhoff, G. (1847). Ueber die Auflosung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Strome gefuhrt wird. Ann. Phys. und Chem. 72, 497--508.
- Krikun, Maxim. Connected allocation to Poisson points in $Bbb Rsp 2$. Electron. Comm. Probab. 12 (2007), 140--145 (electronic). MR2318161 (2008b:60023)
- Lawler, Gregory F. Intersections of random walks.Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991. 219 pp. ISBN: 0-8176-3557-2 MR1117680 (92f:60122)
- Lyons, Russell. A bird's-eye view of uniform spanning trees and forests. Microsurveys in discrete probability (Princeton, NJ, 1997), 135--162, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 41, Amer. Math. Soc., Providence, RI, 1998. MR1630412 (99e:60029)
- Morris, Ben. The components of the wired spanning forest are recurrent. Probab. Theory Related Fields 125 (2003), no. 2, 259--265. MR1961344 (2004a:60024)
- Pemantle, Robin. Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19 (1991), no. 4, 1559--1574. MR1127715 (92g:60014)
- Saloff-Coste, L. Isoperimetric inequalities and decay of iterated kernels for almost-transitive Markov chains. Combin. Probab. Comput. 4 (1995), no. 4, 419--442. MR1377559 (97c:60171)
- Soardi, Paolo M.; Woess, Wolfgang. Amenability, unimodularity, and the spectral radius of random walks on infinite graphs. Math. Z. 205 (1990), no. 3, 471--486. MR1082868 (91m:43002)
- Thomassen, Carsten. Isoperimetric inequalities and transient random walks on graphs. Ann. Probab. 20 (1992), no. 3, 1592--1600. MR1175279 (94a:60106)
- Trofimov, V. I. Groups of automorphisms of graphs as topological groups.(Russian) Mat. Zametki 38 (1985), no. 3, 378--385, 476. MR0811571 (87d:05091)
- Woess, W. (2000).
Random Walks on Infinite Graphs and Groups, volume 138 of
Cambridge Tracts in Mathematics.
Cambridge University Press, Cambridge.MR1743100
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|