Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 8 (2003) > Paper 1 open journal systems 


Some Non-Linear S.P.D.E's That Are Second Order In Time

Robert C. Dalang, Ecole Polytechnique Fédérale
Carl Mueller, University of Rochester


Abstract
We extend J.B. Walsh's theory of martingale measures in order to deal with stochastic partial differential equations that are second order in time, such as the wave equation and the beam equation, and driven by spatially homogeneous Gaussian noise. For such equations, the fundamental solution can be a distribution in the sense of Schwartz, which appears as an integrand in the reformulation of the s.p.d.e. as a stochastic integral equation. Our approach provides an alternative to the Hilbert space integrals of Hilbert-Schmidt operators. We give several examples, including the beam equation and the wave equation, with nonlinear multiplicative noise terms.


Full text: PDF

Pages: 1-21

Published on: February 3, 2003


Bibliography
  1. Adams, R.A. Sobolev Spaces. Pure and Applied Mathematics, Vol. 65, Academic Press, New York-London, 1975.  Math Review link

  2. Carmona, R. and Nualart, D. Random nonlinear wave equations: propagation of singularities. Annals Probab. 16 (1988), 730-751.  Math Review link

  3. Carmona, R. and Nualart, D. Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields 79 (1988), 469--508.  Math Review link

  4. Da Prato, G. and Zabczyk, J. Stochastic Equations in Infinite Dimensions. Encyclopedia of mathematics and its applications 44. Cambridge University Press, Cambridge, New York, 1992.  Math Review link

  5. Dalang, R.C. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e's. Electron. J. Probab. 4 (1999), 29pp.  Math Review link

  6. Dalang, R.C. and Frangos, N.E. The stochastic wave equation in two spatial dimensions. Ann. Probab. 26-1 (1998), 187-212.  Math Review link

  7. Karczewska, A. and Zabczyk, J. Stochastic PDEs with function-valued solutions. In: Infinite dimensional stochastic analysis (Amsterdam, 1999), Royal Neth. Acad. Arts Sci. 52, Amsterdam (2000), 197-216.  Math Review link

  8. Krylov, N.V. and Rozovskii, B.L. Stochastic evolution systems. J. Soviet Math. 16 (1981), 1233-1276.  Math Review number not available.

  9. Krylov, N.V. and Rozovskii, B.L. Stochastic partial differential equations and diffusion processes. Russian Math. Surveys 37 (1982), 81-105.  Math Review link

  10. Léveque, O. Hyperbolic stochastic partial differential equations driven by boundary noises. Ph.D. thesis, no.2452, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2001).  Math Review number not available.

  11. Millet, A. and Sanz-Solé, M. A stochastic wave equation in two space dimension: Smoothness of the law. Annals of Probab. 27 (1999), 803-844.  Math Review link

  12. Mueller, C. Long time existence for the wave equation with a noise term. Ann. Probab. 25-1 (1997), 133-152.  Math Review link

  13. Oberguggenberger, M. and Russo, F. White noise driven stochastic partial differential equations: triviality and non-triviality. In: Nonlinear Theory of Generalized Functions (M. Grosser, G. Hormann, M. Kunzinger & M. Oberguggenberger, eds), Chapman & Hall/CRC Research Notes
    in Mathematics Series, CRC Press (1999), 315-333. Math Review link

  14. Oberguggenberger, M. and Russo, F. Nonlinear stochastic wave equations. Integral Transform. Spec. Funct. 6 (1998), 71-83.  Math Review link

  15. Pardoux, E. Sur des équations aux dérivées partielles stochastiques monotones. C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A101-A103.  Math Review link

  16. Pardoux, E. Equations aux dérivées partielles stochastiques de type monotone. Séminaire sur les Equations aux Dérivées Partielles (1974--1975), III, Exp. No. 2 (1975), p.10.  Math Review link

  17. Pardoux, E. Characterization of the density of the conditional law in the filtering of a diffusion with boundary. In: Recent developments in statistics (Proc. European Meeting Statisticians, Grenoble, 1976). North Holland, Amsterdam (1977), 559-565.  Math Review link

  18. Peszat, S. The Cauchy problem for a nonlinear stochastic wave equation in any dimension. J. Evol. Equ. 2 (2002), 383-394.   Math Review number not available.

  19. Peszat, S. and Zabczyk, J. Stochastic evolution equations with a spatially homogeneous Wiener process. Stoch. Proc. Appl. 72 (1997), 187-204.  Math Review link

  20. Peszat, S. and Zabczyk, J. Nonlinear stochastic wave and heat equations. Probab. Theory Related Fields 116 (2000), 421-443.  Math Review link

  21. Sanz-Solé, M. and Sarra, M. Path properties of a class of Gaussian processes with applications to spde's. In: Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999). (Gestesy, F., Holden, H., Jost, J., Paycha, S., Rockner, M. and Scarlatti, S., eds). CMS Conf. Proc. 28, Amer. Math. Soc., Providence, RI (2000), 303-316.  Math Review link

  22. Schwartz, L. Théorie des distributions. Hermann, Paris (1966).  Math Review link

  23. Stein, E.M. Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970).  Math Review link

  24. Walsh, J.B. An introduction to stochastic partial differential equations, Ecole d'Eté de Prob. de St. Flour XIV, 1984, Lect. Notes in Math 1180, Springer-Verlag (1986).  Math Review link

















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489