 |
|
|
| | | | | |
|
|
|
|
|
Some Non-Linear S.P.D.E's That Are Second Order In Time
|
Robert C. Dalang, Ecole Polytechnique Fédérale Carl Mueller, University of Rochester |
Abstract
We extend J.B. Walsh's theory of martingale measures
in order to deal with stochastic partial differential equations that
are second order in time, such as the wave equation and the beam
equation, and driven by spatially homogeneous Gaussian noise. For such
equations, the fundamental solution can be a distribution in the sense
of Schwartz, which appears as an integrand in the reformulation of the
s.p.d.e. as a stochastic integral equation. Our approach provides an
alternative to the Hilbert space integrals of Hilbert-Schmidt
operators. We give several examples, including the beam equation and
the wave equation, with nonlinear multiplicative noise terms.
|
Full text: PDF
Pages: 1-21
Published on: February 3, 2003
|
Bibliography
-
Adams, R.A. Sobolev Spaces. Pure and Applied Mathematics, Vol. 65,
Academic Press, New York-London, 1975. Math Review
link
- Carmona, R. and Nualart, D. Random nonlinear wave equations:
propagation of singularities. Annals Probab. 16 (1988), 730-751. Math Review
link
- Carmona, R. and Nualart, D. Random nonlinear wave equations: smoothness
of the solutions. Probab. Theory Related Fields 79 (1988), 469--508.
Math
Review link
- Da Prato, G. and Zabczyk, J. Stochastic Equations in Infinite
Dimensions. Encyclopedia of mathematics and its applications 44.
Cambridge University Press, Cambridge, New York, 1992. Math Review
link
- Dalang, R.C. Extending the martingale measure stochastic integral with
applications to spatially homogeneous s.p.d.e's. Electron. J. Probab. 4
(1999), 29pp. Math
Review link
- Dalang, R.C. and Frangos, N.E. The stochastic wave equation in two
spatial dimensions. Ann. Probab. 26-1 (1998), 187-212. Math Review
link
- Karczewska, A. and Zabczyk, J. Stochastic PDEs with function-valued
solutions. In: Infinite dimensional stochastic analysis (Amsterdam,
1999), Royal Neth. Acad. Arts Sci. 52, Amsterdam (2000), 197-216. Math
Review link
- Krylov, N.V. and Rozovskii, B.L. Stochastic evolution systems. J.
Soviet Math. 16 (1981), 1233-1276. Math Review number not
available.
- Krylov, N.V. and Rozovskii, B.L. Stochastic partial differential
equations and diffusion processes. Russian Math. Surveys 37 (1982),
81-105. Math Review
link
- Léveque, O. Hyperbolic stochastic partial differential equations
driven by boundary noises. Ph.D. thesis, no.2452, Ecole Polytechnique
Fédérale de Lausanne, Switzerland (2001). Math
Review number not available.
- Millet, A. and Sanz-Solé, M. A stochastic wave equation in two
space dimension: Smoothness of the law. Annals of Probab. 27 (1999),
803-844. Math
Review link
- Mueller, C. Long time existence for the wave equation with a noise
term. Ann. Probab. 25-1 (1997), 133-152. Math Review
link
- Oberguggenberger, M. and Russo, F. White noise driven stochastic
partial differential equations: triviality and non-triviality. In:
Nonlinear Theory of Generalized Functions (M. Grosser, G. Hormann, M.
Kunzinger & M. Oberguggenberger, eds), Chapman & Hall/CRC
Research Notes
in Mathematics Series, CRC Press (1999), 315-333. Math
Review link
- Oberguggenberger, M. and Russo, F. Nonlinear stochastic wave equations.
Integral Transform. Spec. Funct. 6 (1998), 71-83. Math Review
link
- Pardoux, E. Sur des équations aux dérivées
partielles stochastiques monotones. C. R. Acad. Sci. Paris Sér.
A-B 275 (1972), A101-A103. Math Review
link
- Pardoux, E. Equations aux dérivées partielles
stochastiques de type monotone. Séminaire sur les Equations aux
Dérivées Partielles (1974--1975), III, Exp. No. 2 (1975),
p.10. Math
Review link
- Pardoux, E. Characterization of the density of the conditional law in
the filtering of a diffusion with boundary. In: Recent developments in
statistics (Proc. European Meeting Statisticians, Grenoble, 1976).
North Holland, Amsterdam (1977), 559-565. Math Review
link
- Peszat, S. The Cauchy problem for a nonlinear stochastic wave equation
in any dimension. J. Evol. Equ. 2 (2002), 383-394. Math Review
number not available.
- Peszat, S. and Zabczyk, J. Stochastic evolution equations with a
spatially homogeneous Wiener process. Stoch. Proc. Appl. 72 (1997),
187-204. Math Review
link
- Peszat, S. and Zabczyk, J. Nonlinear stochastic wave and heat
equations. Probab. Theory Related Fields 116 (2000), 421-443. Math
Review link
- Sanz-Solé, M. and Sarra, M. Path properties of a class of
Gaussian processes with applications to spde's. In: Stochastic
processes, physics and geometry: new interplays, I (Leipzig, 1999).
(Gestesy, F., Holden, H., Jost, J., Paycha, S., Rockner, M. and
Scarlatti, S., eds). CMS Conf. Proc. 28, Amer. Math. Soc., Providence,
RI (2000), 303-316. Math
Review link
- Schwartz, L. Théorie des distributions. Hermann, Paris (1966).
Math Review
link
- Stein, E.M. Singular Integrals and Differentiability Properties of
Functions. Princeton University Press (1970). Math Review
link
- Walsh, J.B. An introduction to stochastic partial differential
equations, Ecole d'Eté de Prob. de St. Flour XIV, 1984, Lect.
Notes in Math 1180, Springer-Verlag (1986). Math Review
link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|