![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Isoperimetry between exponential and Gaussian
|
Franck Barthe, Institut de Mathematiques Patrick Cattiaux, Ecole Polytechnique et MODALX Cyril Roberto, Université de Marne La Vallée |
Abstract
We study the isoperimetric problem for product
probability measures with tails between the exponential and the
Gaussian regime. In particular we exhibit many examples where
coordinate half-spaces are approximate solutions of the
isoperimetric problem
|
Full text: PDF
Pages: 1212-1237
Published on: September 12, 2007
|
Bibliography
- Aida, Shigeki. Uniform positivity improving property, Sobolev inequalities, and spectral gaps. J. Funct. Anal. 158 (1998), no. 1, 152--185. MR1641566 (2000d:60125)
- C.Ane, S.Blachere, D.Chafai, P.Fougeres, I.Gentil, F.Malrieu, C.Roberto, and G.Scheffer. Sur les inegalites de Sobolev logarithmiques., volume~10 of Panoramas et Syntheses. S.M.F., Paris, 2000.
- Bakry, D.; Émery, Michel. Diffusions hypercontractives. (French) [Hypercontractive diffusions] Séminaire de probabilités, XIX, 1983/84, 177--206, Lecture Notes in Math., 1123, Springer, Berlin, 1985. MR0889476 (88j:60131)
- Bakry, D.; Ledoux, M. Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123 (1996), no. 2, 259--281. MR1374200 (97c:58162)
- Barthe, Franck. Levels of concentration between exponential and Gaussian. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), no. 3, 393--404. MR1923685 (2003f:60038)
- Barthe, F. Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12 (2002), no. 1, 32--55. MR1904555 (2003d:28017)
- Barthe, F. Infinite dimensional isoperimetric inequalities in product spaces with the supremum distance. J. Theoret. Probab. 17 (2004), no. 2, 293--308. MR2053705 (2005f:28032)
- F.Barthe, P.Cattiaux, and C.Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry. Revista Mat. Iberoamericana, To appear.
- Barthe, F.; Roberto, C. Sobolev inequalities for probability measures on the real line. Dedicated to Professor Aleksander Pelczynski on the occasion of his 70th birthday (Polish). Studia Math. 159 (2003), no. 3, 481--497. MR2052235 (2006c:60019)
- Bertini, Lorenzo; Zegarlinski, Bogusl aw. Coercive inequalities for Gibbs measures. J. Funct. Anal. 162 (1999), no. 2, 257--286. MR1682059 (2000c:60158)
- Bobkov, S. Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996), no. 1, 35--48. MR1387625 (97e:60027)
- Bobkov, S. G. Isoperimetric problem for uniform enlargement. Studia Math. 123 (1997), no. 1, 81--95. MR1438305 (98d:60006)
- Bobkov, S. G.; Götze, F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999), no. 1, 1--28. MR1682772 (2000b:46059)
- Bobkov, S. G.; Udre, K. Characterization of Gaussian measures in terms of the isoperimetric property of half-spaces. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996), Veroyatn. i Stat. 1, 31--38, 356; translation in J. Math. Sci. (New York) 93 (1999), no. 3, 270--275 MR1449845 (98e:60056)
- Bobkov, S. G.; Houdré, C. Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997), no. 1, 184--205. MR1428505 (98g:60032)
- Bobkov, Sergey G.; Houdré, Christian. Weak dimension-free concentration of measure. Bernoulli 6 (2000), no. 4, 621--632. MR1777687 (2001i:28005)
- Bobkov, Serguei G.; Houdré, Christian. Some connections between isoperimetric and Sobolev-type inequalities. Mem. Amer. Math. Soc. 129 (1997), no. 616, viii+111 pp. MR1396954 (98b:46038)
- Bobkov, S. G.; Zegarlinski, B. Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005), no. 829, x+69 pp. MR2146071 (2006c:46027)
- Borell, Christer. The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 (1975), no. 2, 207--216. MR0399402 (53 #3246)
- Borell, Christer. Intrinsic bounds for some real-valued stationary random functions. Probability in Banach spaces, V (Medford, Mass., 1984), 72--95, Lecture Notes in Math., 1153, Springer, Berlin, 1985. MR0821977 (87h:60079)
- Cattiaux, Patrick. Hypercontractivity for perturbed diffusion semigroups. Ann. Fac. Sci. Toulouse Math. (6) 14 (2005), no. 4, 609--628. MR2188585 (2006i:60112)
- Davies, E. B. Heat kernels and spectral theory. Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge, 1989. x+197 pp. ISBN: 0-521-36136-2 MR0990239 (90e:35123)
- Federer, Herbert. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969 xiv+676 pp. MR0257325 (41 #1976)
- Fougères, Pierre. Hypercontractivité et isopérimétrie gaussienne. Applications aux systèmes de spins. (French) [Hypercontractivity and Gaussian isoperimetry. Applications to spin systems] Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 5, 647--689. MR1792659 (2001m:82004)
- Gong, Fu-Zhou; Wang, Feng-Yu. Functional inequalities for uniformly integrable semigroups and application to essential spectrums. Forum Math. 14 (2002), no. 2, 293--313. MR1880915 (2003a:47097)
- Helffer, Bernard. Semiclassical analysis, Witten Laplacians, and statistical mechanics. Series in Partial Differential Equations and Applications, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. x+179 pp. ISBN: 981-238-098-1 MR1936110 (2003j:58038)
- Holley, Richard; Stroock, Daniel. Logarithmic Sobolev inequalities and stochastic Ising models. J. Statist. Phys. 46 (1987), no. 5-6, 1159--1194. MR0893137 (89e:82013)
- Kwapien, S.; Pycia, M.; Schachermayer, W. A proof of conjecture of Bobkov and Houdre. Electron. Comm. Probab. 1 (1996), no. 2, 7--10 (electronic). MR1386289 (97c:60032)
- Latal a, R.; Oleszkiewicz, K. Between Sobolev and Poincaré. Geometric aspects of functional analysis, 147--168, Lecture Notes in Math., 1745, Springer, Berlin, 2000. MR1796718 (2002b:60025)
- Ledoux, M. A simple analytic proof of an inequality by P. Buser. Proc. Amer. Math. Soc. 121 (1994), no. 3, 951--959. MR1186991 (94i:53041)
- Ledoux, Michel. Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXIII, 120--216, Lecture Notes in Math., 1709, Springer, Berlin, 1999. MR1767995 (2002j:60002)
- Ledoux, Michel. The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, RI, 2001. x+181 pp. ISBN: 0-8218-2864-9 MR1849347 (2003k:28019)
- V.G. Maz'ja. Sobolev spaces. Springer Series in Soviet Mathematics. Springer, Berlin, 1985.
- Oleszkiewicz, Krzysztof. On certain characterization of normal distribution. Statist. Probab. Lett. 33 (1997), no. 3, 277--280. MR1456703 (98i:60015)
- Roberto, C.; Zegarli'nski, B. Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups. J. Funct. Anal. 243 (2007), no. 1, 28--66. MR2289793
- Röckner, Michael; Wang, Feng-Yu. Weak Poincaré inequalities and $Lsp 2$-convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001), no. 2, 564--603. MR1856277 (2002j:47075)
- Ros, Antonio. The isoperimetric problem. Global theory of minimal surfaces, 175--209, Clay Math. Proc., 2, Amer. Math. Soc., Providence, RI, 2005. MR2167260 (2006e:53023)
- Rothaus, O. S. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities. J. Funct. Anal. 64 (1985), no. 2, 296--313. MR0812396 (87f:58181)
- Sudakov, V. N.; Cirelcprime son, B. S. Extremal properties of half-spaces for spherically invariant measures. (Russian) Problems in the theory of probability distributions, II. Zap. Nauv cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14--24, 165. MR0365680 (51 #1932)
- Talagrand, Michel. A new isoperimetric inequality and the concentration of measure phenomenon. Geometric aspects of functional analysis (1989--90), 94--124, Lecture Notes in Math., 1469, Springer, Berlin, 1991. MR1122615 (93d:60095)
- Talagrand, Michel. Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. No. 81 (1995), 73--205. MR1361756 (97h:60016)
- Wang, Feng-Yu. Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000), no. 1, 219--245. MR1736202 (2001a:58043)
- Wang, Feng-Yu. A generalization of Poincaré and log-Sobolev inequalities. Potential Anal. 22 (2005), no. 1, 1--15. MR2127729 (2006a:60031)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|