![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Occupation laws for some time-nonhomogeneous Markov chains
|
Zach Dietz, Tulane University Sunder Sethuraman, Iowa State University |
Abstract
We consider finite-state time-nonhomogeneous
Markov chains whose transition matrix at time n
is I+G/nz
where G is a ``generator'' matrix,
that is G(i,j)>0 for i,j distinct, and
G(i,i)= -∑
k≠i G(i,k), and z>0 is a strength parameter.
In these chains, as time grows, the positions are
less and less likely to change, and so form simple
models of age-dependent time-reinforcing schemes.
These chains, however, exhibit a trichotomy of
occupation behaviors depending on parameters.
We show that the average occupation or empirical distribution
vector up to time n, when variously
0<z<1, z>1 or
z=1,
converges in probability to a unique ``stationary'' vector
nG,
converges in law to a nontrivial mixture of point
measures, or converges in law to a distribution
mG
with no atoms and full support on a simplex respectively,
as n tends to infinity. This last type of limit can be
interpreted as a sort of ``spreading'' between the cases 0<z<1 and z>1.
In particular, when G is appropriately chosen, mG is a
Dirichlet distribution, reminiscent of results in Polya urns.
|
Full text: PDF
Pages: 661-683
Published on: May 16, 2007
|
Bibliography
-
Arratia, Richard. On the central role of scale invariant Poisson
processes on (0,¥). Microsurveys in
discrete probability (Princeton, NJ, 1997), 21--41, DIMACS
Ser. Discrete Math. Theoret. Comput. Sci. 41,
Amer. Math. Soc., Providence, RI (1998).
MR1630407 (99i:60098)
-
Arratia, Richard; Barbour, A. D.; Tavare, Simon. On Poisson-Dirichlet
limits for random decomposable combinatorial structures.
Combin. Probab. Comput. 8 (1999), no. 3, 193--208.
MR1702562 (2001b:60029)
-
Arratia, Richard; Barbour, A. D.; Tavare, Simon.
Logarithmic combinatorial structures: a probabilistic approach.
EMS Monographs in Mathematics. European Mathematical Society (EMS),
Zürich, (2003).
MR2032426 (2004m:60004)
-
Athreya, Krishna B. On a characteristic property of Polya's urn.
Studia Sci. Math. Hungar. 4 (1969) 31--35.
MR0247643 (40 #907)
-
Bremaud, Pierre. Markov chains. Gibbs fields, Monte Carlo
simulation, and queues. Texts in Applied Mathematics,
31. Springer-Verlag, New York, (1999).
MR1689633 (2000k:60137)
-
Dobrushin, R. Limit theorems for Markov chains with two states.
(Russian) Izv. Adad. Nauk SSSR 17:4 (1953), 291-330.
Math. Review number not available.
-
Gantert, Nina. Laws of large numbers for the annealing algorithm.
Stochastic Process. Appl. 35 (1990), no. 2, 309--313.
MR1067115 (91i:60086)
-
Gouet, Raul. Strong convergence of proportions in a multicolor Polya
urn.
J. Appl. Probab. 34 (1997), no. 2, 426--435.
MR1447347 (98f:60065)
-
Hanen, Albert. Theoremes limites pour une suite de chaines de Markov.
(French) Ann. Inst. H. Poincare 18 (1963) 197--301.
MR0168017 (29 #5282)
-
Hannig, Jan; Chong, Edwin K. P.; Kulkarni, Sanjeev R.
Relative frequencies of generalized simulated annealing.
Math. Oper. Res. 31 (2006), no. 1, 199--216.
MR2205528 (2006i:90124)
-
Hartfiel, D. J. Dense sets of diagonalizable matrices.
Proc. Amer. Math. Soc. 123 (1995), no. 6, 1669--1672.
MR1264813 (95k:15011)
-
Horn, Roger A.; Johnson, Charles R.
Matrix analysis. Corrected reprint of the 1985 original.
Cambridge University Press, Cambridge, (1990).
MR1084815 (91i:15001)
-
Isaacson, Dean L.; Madsen, Richard W.
Markov chains. Theory and Applications.
Wiley Series in Probability and Mathematical Statistics.
John Wiley & Sons, New York-London-Sydney, (1976).
MR0407991 (53 #11758)
-
Iosifescu, Marius. Finite Markov processes and their
applications.
Wiley Series in Probability and Mathematical Statistics.
John Wiley & Sons, Ltd., Chichester; Editura Tehnicu a, Bucharest,
(1980).
MR0587116 (82c:60123)
-
Iosifescu, M.; Theodorescu, R. Random processes and learning.
Die Grundlehren der mathematischen Wissenschaften, Band 150.
Springer-Verlag, New York, (1969).
MR0293704 (45 #2781)
-
Kotz, Samuel; Balakrishnan, N.
Advances in urn models during the past two decades.
Advances in combinatorial methods and applications to probability
and
statistics,
203--257, Stat. Ind. Technol.,
Birkhauser Boston, Boston, MA,
(1997).
MR1456736 (98f:60012)
-
Kotz, Samuel; Balakrishnan, N.; Johnson, Norman L.
Continuous multivariate distributions. Vol. 1. Models and
applications.
Second edition. Wiley Series in Probability and Statistics: Applied
Probability and Statistics. Wiley-Interscience, New York, (20000.
MR1788152 (2001h:62001)
-
Liu, Wen; Liu, Guo Xin. A class of strong laws for
functionals of countable nonhomogeneous Markov chains.
Statist. Probab. Lett. 22 (1995), no. 2, 87--96.
MR1327733 (96e:60121)
-
Miclo, Laurent. Sur les temps d'occupations des processus de Markov
finis inhomogènes a basse temperature. (French)
[Occupation times of low-temperature nonhomogeneous finite Markov
processes]
Stochastics Stochastics Rep. 63 (1998), no. 1-2,
65--137.
MR1639780 (99e:60162)
-
Del Moral, P.; Miclo, L. Self-interacting Markov chains.
Stoch. Anal. Appl. 24 (2006), no. 3, 615--660.
MR2220075
-
Pemantle, Robin. A survey of random processes with reinforcement.
Probab. Surv. 4 (2007), 1--79 (electronic).
MR2282181
-
Pitman, Jim.
Some developments of the Blackwell-MacQueen urn scheme.
Statistics, probability and game theory, 245--267,
IMS Lecture Notes Monogr. Ser., 30,
Inst. Math. Statist.,
Hayward, CA, (1996).
MR1481784 (99c:60017)
-
Pitman, J. Combinatorial stochastic processes.
Lectures from the 32nd Summer School on Probability Theory held in
Saint-Flour, July 7--24, 2002. With a foreword by Jean Picard.
Lecture Notes in Mathematics, 1875.
Springer-Verlag, Berlin, (2006).
MR2245368
-
Sethuraman, Jayaram. A constructive definition of Dirichlet priors.
Statist. Sinica 4 (1994), no. 2, 639--650.
MR1309433 (95m:62058)
-
Vervaat, W. Success epochs in Bernoulli trials
(with applications in number theory).
Mathematical Centre Tracts, 42. Mathematisch Centrum,
Amsterdam, (1972).
MR0328989 (48 #7331)
-
Wen, Liu; Weiguo, Yang.
An extension of Shannon-McMillan
theorem and some limit properties
for nonhomogeneous Markov chains. Stochastic Process. Appl.
61
(1996), no. 1, 129--145.
MR1378852 (97a:60052)
-
Winkler, Gerhard. Image analysis, random fields and
Markov chain Monte Carlo methods. A mathematical introduction.
Second edition. Applications of Mathematics 27.
Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin,
(2003).
MR1950762 (2004c:94028)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|