Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 3 (1998) > Paper 4 open journal systems 


Geometric Evolution Under Isotropic Stochastic Flow

M. Cranston, University of Rochester
Y. Le Jan, Université de Paris, Sud


Abstract
Consider an embedded hypersurface $M$ in $RR^3$. For $Phi_t$ a stochastic flow of differomorphisms on $RR^3$ and $x in M$, set $x_t = Phi_t (x)$ and $M_t = Phi_t (M)$. In this paper we will assume $Phi_t$ is an isotropic (to be defined below) measure preserving flow and give an explicit descripton by SDE's of the evolution of the Gauss and mean curvatures, of $M_t$ at $x_t$. If $lambda_1 (t)$ and $lambda_2 (t)$ are the principal curvatures of $M_t$ at $x_t$ then the vector of mean curvature and Gauss curvature, $(lambda_1 (t) + lambda_2 (t)$, $lambda_1 (t) lambda_2 (t))$, is a recurrent diffusion. Neither curvature by itself is a diffusion. In a separate addendum we treat the case of $M$ an embedded codimension one submanifold of $RR^n$. In this case, there are $n-1$ principal curvatures $lambda_1 (t), dotsc, lambda_{n-1} (t)$. If $P_k, k=1$, $n-1$ are the elementary symmetric polynomials in $lambda_1, dotsc, lambda_{n-1}$, then the vector $(P_1 (lambda_1 (t), dotsc, lambda_{n-1} (t)), dotsc, P_{n-1} (lambda_1 (t), dotsc, lambda_{n-1} (t))$ is a diffusion and we compute the generator explicitly. Again no projection of this diffusion onto lower dimensions is a diffusion. Our geometric study of isotropic stochastic flows is a natural offshoot of earlier works by Baxendale and Harris (1986), LeJan (1985, 1991) and Harris (1981).


Full text: PDF

Pages: 1-36

Published on: February 12, 1998


Bibliography

  • P. Baxendale, (1984), Brownian motions in the diffeomorphism Group. I, Compositio Math. 53, 19--50. Math. Review 86e:58086

  • P. Baxendale and T.Harris, (1986), Isotropic stochastic flows, Annals of Prob., Vol 14, 1155--1179. Math. Review 88c:60030

  • R. Bishop and S. Goldberg, (1980), Tensor Analysis on Manifolds, Dover, Toronto. Math. Review 82g:53001

  • Hardy, Littlewood, Polya, (1973), Inequalities, Cambridge University Press, Cambridge. Math. Review 89d:26016

  • T. Harris, (1981), Brownian motions on the homeomorphisms of the plane, Annals of Prob. Vol. 9, 232--254. Math. Review 82e:60130

  • N. Ikeda, S. Watanabe, (1989), Stochastic Differential Equations and Diffusion Processes, North-Holland, New York. Math. Review 90m:60069

  • Y. LeJan, (1985), On isotropic Brownian motions, Zeit. für Wahr., 70, 609--620. Math. Review 87a:60090

  • Y. LeJan, (1991), Asymototic properties of isotropic Brownian flows, in Spatial Stochastic Processes, ed. K. Alexander, J. Watkins, Birkh"auser, Boston, 219--232. Math. Review 92k:60142

  • Y. LeJan, S. Watanabe (1984), Stochastic flows of diffeomorphisms, Proc. of the Taniguchi Symposium, 307--332, North Holland, New York. Math. Review 86i:58140

  • M. Spivak, (1979), A comprehensive introduction to differential geometry, Publish or Perish, Berkeley. Math. Review 82g:53003e
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489