![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
A new model for evolution in a spatial continuum
|
Nick H Barton, Institute of Science and Technology, Austria Alison M Etheridge, University of Oxford Amandine Véber, Université Paris 11 |
Abstract
We investigate a new model for populations evolving in a spatial continuum. This model can be thought of as a spatial version of the Lambda-Fleming-Viot process. It explicitly incorporates both small scale reproduction events and large scale extinction-recolonisation events. The lineages ancestral to a sample from a population evolving according to this model can be described in terms of a spatial version of the Lambda-coalescent. Using a technique of Evans (1997), we prove existence and uniqueness in law for the model. We then investigate the asymptotic behaviour of the genealogy of a finite number of individuals sampled uniformly at random (or more generally `far enough apart') from a two-dimensional torus of sidelength L as L tends to infinity. Under appropriate conditions (and on a suitable timescale) we can obtain as limiting genealogical processes a Kingman coalescent, a more general Lambda-coalescent or a system of coalescing Brownian motions (with a non-local coalescence mechanism).
|
Full text: PDF
Pages: 162-216
Published on: February 24, 2010
|
Bibliography
-
Barton, N.H., Depaulis, F., and Etheridge, A.M. (2002). Neutral evolution in spatially continuous populations.
Theor. Pop. Biol., 61:31--48.
-
Barton, N.H., Kelleher, J., and Etheridge, A.M. (2009). A new model for large-scale population dynamics: quantifying phylogeography.
Preprint.
-
Berestycki, N., Etheridge, A.M., and Hutzenthaler, M. (2009). Survival, extinction and ergodicity in a spatially continuous population model.
Markov Process. Related Fields, 15:265--288.
MR2554364
-
Bertoin, J. (1996). Lévy Processes. Cambridge University Press.
MR1406564 (98e:60117)
-
Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes.
Probab. Theory Related Fields, 126:261--288.
MR1990057 (2004f:60080)
-
Bhattacharya, R.N. (1977). Refinements of the multidimensional central limit theorem and applications.
Ann. Probab., 5:1--27.
MR0436273 (55 #9220)
-
Billingsley, P. (1995). Probability and Measure. Wiley.
MR1324786 (95k:60001)
-
Birkner, M., Blath, J., Capaldo, M., Etheridge, A.M., M"ohle, M., Schweinsberg, J., and Wakolbinger, A. (2005). Alpha-stable branching and Beta-coalescents.
Electron. J. Probab., 10:303--325.
MR2120246 (2006c:60100)
-
Cox, J.T. (1989). Coalescing random walks and voter model consensus times on the torus in Z^d.
Ann. Probab., 17:1333--1366.
MR1048930 (91d:60250)
-
Cox, J.T. and Durrett, R. (2002). The stepping stone model: new formulas expose old myths.
Ann. Appl. Probab., 12:1348--1377.
MR1936596 (2003j:60138)
-
Cox, J.T. and Griffeath, D. (1986). Diffusive clustering in the two-dimensional voter model.
Ann. Probab., 14:347--370.
MR0832014 (87j:60146)
-
Cox, J.T. and Griffeath, D. (1990). Mean field asymptotics for the planar stepping stone model.
Proc. London Math. Soc., 61:189--208.
MR1051103 (92b:60098)
-
Donnelly, P.J. and Kurtz, T.G. (1999). Particle representations for measure-valued population models.
Ann. Probab., 27:166--205.
MR1681126 (2000f:60108)
-
Eller, E., Hawks, J., and Relethford, J.H. (2004). Local extinction and recolonization, species effective population size, and modern human origins.
Human Biology, 76(5):689--709.
-
Etheridge, A.M. (2008). Drift, draft and structure: some mathematical models of evolution.
Banach Center Publ., 80:121--144.
MR2433141 (2009m:60237)
-
Ethier, S.N. and Kurtz, T.G. (1986).
Markov processes: characterization and convergence. Wiley.
MR0838085 (88a:60130)
-
Evans, S.N. (1997). Coalescing Markov labelled partitions and a continuous sites genetics model with infinitely many types.
Ann. Inst. H. Poincaré Probab. Statist., 33:339--358.
MR1457055 (98m:60126)
-
Felsenstein, J. (1975). A pain in the torus: some difficulties with the model of isolation by distance.
Amer. Nat., 109:359--368.
-
Kimura, M. (1953). Stepping stone model of population.
Ann. Rep. Nat. Inst. Genetics Japan, 3:62--63.
-
Kingman, J.F.C. (1982). The coalescent.
Stochastic Process. Appl., 13:235--248.
MR0671034 (84a:60079)
-
Limic, V. and Sturm, A. (2006). The spatial Lambda-coalescent.
Electron. J. Probab., 11(15):363--393.
MR2223040 (2007b:60183)
-
Malécot, G. (1948).
Les Mathématiques de l'hérédité. Masson et Cie, Paris.
MR0027490 (10,314c)
-
Möhle, M. and Sagitov, S. (2001). A classification of coalescent processes for haploid exchangeable population models.
Ann. Probab., 29:1547--1562.
MR1880231 (2003b:60134)
-
Pitman, J. (1999). Coalescents with multiple collisions.
Ann. Probab., 27:1870--1902.
MR1742892 (2001h:60016)
-
Ridler-Rowe, C.J. (1966). On first hitting times of some recurrent two-dimensional random walks.
Z. Wahrsch. verw. Geb., 5:187--201.
MR0199901 (33 #8041)
-
Rogers, L.C.G. and Williams, D. (1987).
Diffusions, Markov processes, and martingales: Itô calculus. Wiley.
MR1780932 (2001g:60189)
-
Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines.
J. Appl. Probab., 26:1116--1125.
MR1742154 (2001f:92019)
-
Sawyer, S. and Fleischmann, J. (1979). The maximal geographical range of a mutant allele considered as a subtype of a Brownian branching random field.
Proc. Natl. Acad. Sci. USA, 76(2):872--875.
-
Schweinsberg, J. (2000). Coalescents with simultaneous multiple collisions.
Electron. J. Probab., 5:1--50.
MR1781024 (2002g:60113)
-
Wilkins, J.F. (2004). A separation of timescales approach to the coalescent in a continuous population.
Genetics, 168:2227--2244.
-
Wilkins, J.F. and Wakeley, J. (2002). The coalescent in a continuous, finite, linear population.
Genetics, 161:873--888.
-
Wright, S. (1931). Evolution in Mendelian populations.
Genetics, 16:97--159.
-
Wright, S. (1943). Isolation by distance.
Genetics, 28:114--138.
-
Zähle, I., Cox, J.T., and Durrett, R. (2005). The stepping stone model II: genealogies and the infinite sites model.
Ann. Appl. Probab., 15:671--699.
MR2114986 (2006d:60157)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|