![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Random Walks on Trees and Matchings
|
Persi Diaconis, Stanford University Susan Holmes, Stanford University |
Abstract
We give sharp rates of convergence for a natural Markov
chain on the space of phylogenetic trees and dually for the natural
random walk on the set of perfect matchings in the complete graph on
2n vertices. Roughly, the results show that 1/2 n log n
steps are
necessary
and suffice to achieve randomness. The proof depends on the
representation
theory of the symmetric group and a bijection between trees and
matchings.
|
Full text: PDF
Pages: 1-17
Published on: January 2, 2002
|
Bibliography
- Aldous, D. J. (1996), Probability Distributions on Cladograms
in Random discrete structures (Aldous and Pemantle, eds.)
Number 76 in IMA Series. Springer Verlag, NY, 1-18
MR:98d:60018
- Aldous, D. J. (1998),
Stochastic coalescence In Proceedings of the International
Congress of Mathematicians, Vol. III (Berlin, 1998), number
Extra Vol. III, 205-211 (electronic)
MR:99i:60171
- Aldous, D. J.(1999), Deterministic and stochastic models for
coalescence (aggregation and coagulation): a review of the
mean-field theory for probabilists.
Bernoulli 5, 3-48.
MR:2001c:60153
- Aldous, D. J. (2000), Mixing time for a Markov chain
on cladograms.Combin. Probab. Computing 9, 191-204.
MR:2001f:05129
- Aldous, D. J. (2001), Stochastic models and descriptive statistics for phylogenetic trees,
from Yule to today.
Statist. Sci. 16, 23-34.
MR:1838600
- Aldous, D. J. and Fill, J. (2002), Reversible Markov chains and random walks on graphs.
available online at Book web page
- Barbour, A. D., Holst, L. and Janson, S. (1992),
Poisson approximation
The Clarendon Press Oxford University Press, New York.
Oxford Science Publications.
MR:93g:60043
- Diaconis, P. (1988),
Group Representations in Probability and Statistics
Institute of Mathematical Statistics, Hayward, Calif.
MR:90a:60001
- Diaconis, P. and Hanlon, P. (1992),
Eigen-analysis for some examples of the Metropolis algorithm.
In Hypergeometric functions on domains of positivity, Jack
polynomials, and applications
(Tampa, FL, 1991), Amer. Math.
Soc., Providence, RI. 99-117.
MR:94b:05205
- Diaconis, P. and Ram, A. (2000),
Analysis of systematic scan Metropolis algorithms using
Iwahori-Hecke algebra techniques.
Michigan Math. Journ. 4, 157-190.
MR:2001j:60132
- Diaconis, P. and Saloff-Coste, L. (1993a),
Comparison techniques for random walk on finite groups.
Ann. Probab. 21, 2131-2156.
MR:95a:60009
- Diaconis, P. and Saloff-Coste, L.(1993b),
Comparison theorems for reversible Markov chains.
Ann. Appl. Probab. 3, 696-730.
MR:94i:60074
- Diaconis, P. and Shahshahani, M. (1981),
Generating a random permutation with random transpositions.
Z. W. 57, 159-179.
MR:82h:60024
- Diaconis, P. and Shahshahani, M. (1987),
Time to reach stationarity in the Bernoulli-Laplace diffusion
model.
SIAM J. Math. Anal. 18, 208-218.
MR:88e:60014
- Diaconis, P. W.and Holmes, S. P. (1998).
Matchings and phylogenetic trees.
Proc. Natl. Acad. Sci. USA 95, 14600-14602 (electronic).
MR:1665632
- Durrett, R., Granovsky, B. L., and Gueron, S. (1999).
The equilibrium behavior of reversible coagulation-fragmentation
processes.
J. Theoret. Probab. 12, 447-474.
MR:2000g:82013
- Ewens, W. J. (1972),
The sampling theory of selectively neutral alleles.
Theoretical Population Biology 3, 87-112.
MR:48:3526
- Hammersley, J. M. and Handscomb, D. C. (1964),
Monte Carlo Methods.
Chapman and Hall, London.
MR:36:6114
- Holmes, S. (1999),
Phylogenies: An overview.
In Halloran, E. and Geisser, S., editors, Statistics and
Genetics, number 81 in IMA. Springer Verlag, NY.
Preprint
- Inglis, N. F. J., Richardson, R. W., and Saxl, J. (1990),
An explicit model for the complex representations of S_n.
Arch. Math. (Basel) 54, 258-259.
MR:91d:20017
- Ingram, R. E. (1950),
Some characters of the symmetric group.
Proc. Amer. Math. Soc. 1, 358-369.
MR:12,157b
- James, G. and Kerber, A. (1981),
The representation theory of the symmetric group.
Addison-Wesley, Reading, MA.
MR:83k:20003
-
James, A. T. (1968),
Calculation of zonal polynomial coefficients by use of the
Laplace-Beltrami operator.
Ann. Math. Statist 39, 1711-1718.
MR:37 #7039
- James, A. T.(1982).
Analysis of variance determined by symmetry and combinatorial
properties of zonal polynomials.
In Statistics and probability: essays in honor of C. R. Rao,
North-Holland, Amsterdam, 329-341.
MR:83h:62076
- Jerrum, M. and Sinclair, A. (1989),
Approximating the permanent.
SIAM Journal on Computing 18, 1149-1178.
MR:91a:05075
- Jerrum, M., Sinclair, A., and Vigoda, E. (2000),
A polynomial-time approximation algorithm for the permanent of a
matrix with non-negative entries.
Electronic Colloquium on Computational Complexity (ECCC).
MR number not available.
- Lovász, L. and Plummer, M. D. (1985),
Matching Theory.
North Holland, Amsterdam.
MR:88b:90087
- Macdonald, I. G. (1995),
Symmetric functions and Hall polynomials.
The Clarendon Press Oxford University Press, New York, second
edition.
With contributions by A. Zelevinsky, Oxford Science Publications.
MR:96h:05207
- Mayer-Wolfe, E., Zeitouni, O., and Zerner, M. (2001),
Asymptotics of certain coagulation-fragmentation processes and
invariant Poisson-Dirichlet measures.
Technical report, Dept. of Mathematics, Stanford University,
Stanford, CA94305.
MR number not available.
- Page, R. and Holmes, E. (2000),
Molecular Evolution, A Phylogenetic Approach.
Blackwell Science.
MR number not available.
- Pulleyblank, W. (1995),
Matchings and extensions.
In Graham, R. L., M. Grötschel and L. Lovász
editors,
Handbook of combinatorics. Vol. 1, 2, 179-232,
Amsterdam. Elsevier Science B.V.
MR:96j:05090
- Roussel, S. (2000).
Phénomène de cutoff pour certaines marches aléatoires sur le
groupe symetrique.
Colloq. Math. 86, 111-135.
MR:2001m:60019
- Sagan, B. E. (2001),
The symmetric group.
Springer-Verlag, New York, second edition.
Representations, combinatorial algorithms, and symmetric functions.
MR:2001m:05261
- Saloff-Coste, L. (1997),
Lectures on finite Markov chains.
In Lectures on probability theory and statistics, pages
301-413, Berlin. Lecture Notes in Math., 1665, Springer-Verlag.
Lectures from the 26th Summer School on Probability Theory held in
Saint-Flour,Edited by P. Bernard.
MR:99b:60119
- Saxl, J. (1981),
On multiplicity-free permutation representations.
In Finite geometries and designs (Proc. Conf., Chelwood Gate,
1980), pages 337-353. Cambridge Univ. Press, Cambridge.
MR:82i:20018
- Scarabotti, F. (1997),
Time to reach stationarity in the Bernoulli-Laplace diffusion
model with many urns.
Adv. Math. 18, 351-371.
MR:98d:60014
- Schröder, E. (1870),
Veir combinatorische probleme.
Zeit. für. Math. Phys. 15, 361-376.
MR number not available.
- Schweinsberg, J. (2001),
An O(n2) bound for the relaxation time of a Markov chain on
cladograms.
Technical Report 572, Dept Statistics, UC Berkeley.
Preprint
- Serre, J.-P. (1977),
Linear representations of finite groups.
Springer-Verlag, New York.
Translated from the second French edition by Leonard L. Scott,
Graduate Texts in Mathematics, Vol. 42.
MR:56 #8675
- Wachs, M. (2001),
Topology of matching, homology of matching, combinatorial Laplacian
of the matching complex.
Technical report, available online at
Preprint
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|