![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Law of the Iterated Logarithm for a Triangular Array of Empirical Processes
|
Miguel A. Arcones, State University of New York |
Abstract
We study the
compact law of the iterated logarithm for a certain type of
triangular arrays of
empirical processes, appearing in statistics
(M-estimators, regression, density estimation, etc).
We give necessary and sufficient conditions
for the law of the iterated logarithm of these
processes of the type of conditions used in Ledoux and Talagrand (1991):
convergence in probability, tail conditions and total boundedness of the
parameter space with respect to certain pseudometric.
As an application, we consider the law of
the iterated logarithm for a class of density estimators. We obtain
the order of the optimal window for the law of the iterated
logarithm of density estimators.
We also consider the compact law of the iterated logarithm
for kernel density estimators when they have large
deviations similar to those of a
Poisson process.
|
Full text: PDF
Pages: 1-39
Published on: August 18, 1997
|
Bibliography
- Alexander, K. S. (1987),
Central limit theorems
for stochastic processes under random entropy conditions.
Probab. Theor. Rel. Fields 75, 351-378.
Math. Review 88h:60069
- Arcones, M. A. (1994),
Some strong limit theorems for
M-estimators.
Stoch. Proc. Appl.
53, 241-268 .
Math. Review 96c:60040
- Arcones, M. A. (1995),
Weak convergence for the row sums of a
triangular array of empirical processes indexed by a
manageable triangular
array of functions.
(preprint) Math. Review number not available.
- Arcones, M. A. (1995), Weak
convergence for the row sums of a triangular array of
empirical processes under bracketing conditions.
(preprint) Math. Review number not available.
- Arcones, M. A. (1996),
The Bahadur-Kiefer representation of
U-quantiles. Annals of Statistics, 24,
1400-1422. Math. Review number not available.
- Arcones, M. A. (1996), The Bahadur-Kiefer
representation of Lp regression estimators.
Econometric Theory 12 257-283.
Math. Review 97d:62119
- Arcones, M. A. and
Giné, E. (1995),
On the law of the iterated logarithm for canonical
U-statistics and
processes.
Stoch. Proc. Applic. 58, 217-245.
Math. Review 96i:60031
- Aronszajn, N. (1950), Theory of reproducing kernels.
Trans. Amer. Mathem. Soc. 68, 337-404.
Math. Review 14,479c
- Bingham, N. H., Goldie, C. M. and
Teugels, J. L. (1987),
Regular Variation. Cambridge University Press,
Cambridge, United Kingdom.
Math. Review 88i:26004
- Deheuvels, P. and Mason, D. M. (1990),
Nonstandard functional
laws of the iterated logarithm for tail empirical and quantile
processes.
Ann. Probab. 18, 1693-1722.
Math. Review 91j:60056
- Deheuvels, P. and Mason, D. M. (1991),
A tail empirical process
approach to some nonstandard laws of the iterated logarithm.
J. Theor.
Probab. 4, 53-85.
Math. Review 92e:60061
- Deheuvels, P. and Mason, D. M. (1994),
Functional laws of the iterated logarithm for local
empirical processes indexed by sets. Ann. Probab.
22, 1619-1661.
Math. Review 96e:60048
- Deheuvels, P. and Mason, D. M. (1995),
Nonstandard local empirical processes indexed by
sets. J. Statist. Plann. Inference 45, 91-112.
Math. Review 97c:60011
- Dembo, A. and Zeitouni, O. (1993),
Large Deviations Techniques and Applications.
Jones and Barlett Publishers, Boston.
Math. Review 95a:60034
- Dudley, R. M. (1984),
A course on empirical processes.
Lect. Notes in Math. 1097, 1-142. Springer,
New York.
Math. Review 88e:60029
- Ellis, R. S. (1984),
Large deviations for a general class of
random vectors. Ann. Probab. 12, 1-12.
Math. Review 85e:60032
- Finkelstein, H. (1971),
The law of the iterated logarithm for
empirical distributions, Ann. Math. Statist.
42, 607-615.
Math. Review 44 #4803
- Giné, E. and Zinn, J. (1986),
Lectures on the central limit
theorem for empirical processes, Lect. Notes in Math.
1221,
50-112. Springer-Verlag, New York.
Math. Review 88i:60063
- Hall, P. (1981),
Laws of the iterated logarithm for nonparametric
density estimators. Z. Wahrsch. verw. Gebiete 56,
47-61.
Math. Review 82e:60049
- Hall, P. (1991),
On iterated logarithm laws for linear arrays and
nonparametric regression estimators. Ann. Probab. 19,
740-757.
Math. Review 92g:62038
- Härdle, W. (1984),
A law of the iterated logarithm for
nonparametric regression function estimators. Ann. Probab.
12, 624-635.
Math. Review 85i:62033
- Kiefer, J. (1972), Iterated logarithm analogues for sample
quantiles when pn -> 0. Proc.
Sixth Berkeley Symp. Math. Stat. and Prob. I,
227-244. Univ. of
California Press, Berkeley.
Math. Review 53 #6696
- Ledoux, M. and Talagrand, M. (1988),
Characterization of the law
of the iterated logarithm in Banach spaces.
Ann. Probab. 16,
1242-1264.
Math. Review 89i:60016
- Ledoux, M. and Talagrand, M. (1991),
Probability in Banach
Spaces. Springer, New York
Math. Review 93c:60001
- Parzen, E. (1962),
On the estimation of a probability density
function and mode. Ann. Mathem. Statist.
33, 1065-1076.
Math. Review 26: #841
- Prakasa Rao, B. L. S. (1983),
Nonparametric Functional Estimation. Academic Press, New
York.
Math. Review 86m:62076
- Stout, W. (1974),
Almost Sure Convergence. Academic Press, New York.
Math. Review 56 #13334
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|