Home | Contents | Submissions, editors, etc. | Login | Search | ECP
 Electronic Journal of Probability > Vol. 2 (1997) > Paper 5 open journal systems 


The Law of the Iterated Logarithm for a Triangular Array of Empirical Processes

Miguel A. Arcones, State University of New York


Abstract
We study the compact law of the iterated logarithm for a certain type of triangular arrays of empirical processes, appearing in statistics (M-estimators, regression, density estimation, etc). We give necessary and sufficient conditions for the law of the iterated logarithm of these processes of the type of conditions used in Ledoux and Talagrand (1991): convergence in probability, tail conditions and total boundedness of the parameter space with respect to certain pseudometric. As an application, we consider the law of the iterated logarithm for a class of density estimators. We obtain the order of the optimal window for the law of the iterated logarithm of density estimators. We also consider the compact law of the iterated logarithm for kernel density estimators when they have large deviations similar to those of a Poisson process.


Full text: PDF

Pages: 1-39

Published on: August 18, 1997


Bibliography
  1. Alexander, K. S. (1987), Central limit theorems for stochastic processes under random entropy conditions. Probab. Theor. Rel. Fields 75, 351-378. Math. Review 88h:60069
  2. Arcones, M. A. (1994), Some strong limit theorems for M-estimators. Stoch. Proc. Appl. 53, 241-268 . Math. Review 96c:60040
  3. Arcones, M. A. (1995), Weak convergence for the row sums of a triangular array of empirical processes indexed by a manageable triangular array of functions. (preprint) Math. Review number not available.
  4. Arcones, M. A. (1995), Weak convergence for the row sums of a triangular array of empirical processes under bracketing conditions. (preprint) Math. Review number not available.
  5. Arcones, M. A. (1996), The Bahadur-Kiefer representation of U-quantiles. Annals of Statistics, 24, 1400-1422. Math. Review number not available.
  6. Arcones, M. A. (1996), The Bahadur-Kiefer representation of Lp regression estimators. Econometric Theory 12 257-283. Math. Review 97d:62119
  7. Arcones, M. A. and Giné, E. (1995), On the law of the iterated logarithm for canonical U-statistics and processes. Stoch. Proc. Applic. 58, 217-245. Math. Review 96i:60031
  8. Aronszajn, N. (1950), Theory of reproducing kernels. Trans. Amer. Mathem. Soc. 68, 337-404. Math. Review 14,479c
  9. Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987), Regular Variation. Cambridge University Press, Cambridge, United Kingdom. Math. Review 88i:26004
  10. Deheuvels, P. and Mason, D. M. (1990), Nonstandard functional laws of the iterated logarithm for tail empirical and quantile processes. Ann. Probab. 18, 1693-1722. Math. Review 91j:60056
  11. Deheuvels, P. and Mason, D. M. (1991), A tail empirical process approach to some nonstandard laws of the iterated logarithm. J. Theor. Probab. 4, 53-85. Math. Review 92e:60061
  12. Deheuvels, P. and Mason, D. M. (1994), Functional laws of the iterated logarithm for local empirical processes indexed by sets. Ann. Probab. 22, 1619-1661. Math. Review 96e:60048
  13. Deheuvels, P. and Mason, D. M. (1995), Nonstandard local empirical processes indexed by sets. J. Statist. Plann. Inference 45, 91-112. Math. Review 97c:60011
  14. Dembo, A. and Zeitouni, O. (1993), Large Deviations Techniques and Applications. Jones and Barlett Publishers, Boston. Math. Review 95a:60034
  15. Dudley, R. M. (1984), A course on empirical processes. Lect. Notes in Math. 1097, 1-142. Springer, New York. Math. Review 88e:60029
  16. Ellis, R. S. (1984), Large deviations for a general class of random vectors. Ann. Probab. 12, 1-12. Math. Review 85e:60032
  17. Finkelstein, H. (1971), The law of the iterated logarithm for empirical distributions, Ann. Math. Statist. 42, 607-615. Math. Review 44 #4803
  18. Giné, E. and Zinn, J. (1986), Lectures on the central limit theorem for empirical processes, Lect. Notes in Math. 1221, 50-112. Springer-Verlag, New York. Math. Review 88i:60063
  19. Hall, P. (1981), Laws of the iterated logarithm for nonparametric density estimators. Z. Wahrsch. verw. Gebiete 56, 47-61. Math. Review 82e:60049
  20. Hall, P. (1991), On iterated logarithm laws for linear arrays and nonparametric regression estimators. Ann. Probab. 19, 740-757. Math. Review 92g:62038
  21. Härdle, W. (1984), A law of the iterated logarithm for nonparametric regression function estimators. Ann. Probab. 12, 624-635. Math. Review 85i:62033
  22. Kiefer, J. (1972), Iterated logarithm analogues for sample quantiles when pn -> 0. Proc. Sixth Berkeley Symp. Math. Stat. and Prob. I, 227-244. Univ. of California Press, Berkeley. Math. Review 53 #6696
  23. Ledoux, M. and Talagrand, M. (1988), Characterization of the law of the iterated logarithm in Banach spaces. Ann. Probab. 16, 1242-1264. Math. Review 89i:60016
  24. Ledoux, M. and Talagrand, M. (1991), Probability in Banach Spaces. Springer, New York Math. Review 93c:60001
  25. Parzen, E. (1962), On the estimation of a probability density function and mode. Ann. Mathem. Statist. 33, 1065-1076. Math. Review 26: #841
  26. Prakasa Rao, B. L. S. (1983), Nonparametric Functional Estimation. Academic Press, New York. Math. Review 86m:62076
  27. Stout, W. (1974), Almost Sure Convergence. Academic Press, New York. Math. Review 56 #13334
















Research
Support Tool
Capture Cite
View Metadata
Printer Friendly
Context
Author Address
Action
Email Author
Email Others


Home | Contents | Submissions, editors, etc. | Login | Search | ECP

Electronic Journal of Probability. ISSN: 1083-6489