|
|
|
| | | | | |
|
|
|
|
|
Collision Local Times, Historical Stochastic Calculus, and Competing Species
|
Steven N. Evans, University of California at Berkeley Edwin A. Perkins, The University of British Columbia |
Abstract
Branching measure-valued diffusion models are investigated that can
be regarded as pairs of historical Brownian motions modified by a
competitive interaction mechanism under which individuals from each
population have their longevity or fertility adversely affected by
collisions with individuals from the other population. For 3 or
fewer spatial dimensions, such processes are constructed using a new
fixed-point technique as the unique solution of a strong equation
driven by another pair of more explicitly constructible
measure-valued diffusions. This existence and uniqueness is used to
establish well-posedness of the related martingale problem and hence
the strong Markov property for solutions. Previous work of the
authors has shown that in 4 or more dimensions models with the
analogous definition do not exist.
|
Full text: PDF
Pages: 1-120
Published on: April 8, 1998
|
Bibliography
-
R. J. Adler and R. Tribe,
Uniqueness of a historical SDE with a singular interaction, J. Theoret.
Probab., 1997. In Press.
Math Review article not available.
-
M. T. Barlow, S. N. Evans, and E. A. Perkins,
Collision local times and measure-valued processes. Canad. J. Math.,
43:897-938, 1991.
Math Review link
-
B. Bolker and S. W. Pacala,
Using moment equations to understand stochastically driven spatial pattern
formation in ecological systems. Theoret. Popul. Biol., 1997. In Press.
Math Review article not available.
-
B. Bolker, S. W. Pacala, and S. A. Levin,
Moment methods for stochastic processes in continuous space and time. In U.
Dieckmann and J. Metz, editors, Low-Dimensional Dynamics of Spatial
Ecological Systems, 1997. In Press.
Math Review article not available.
-
D. A. Dawson, Measure-valued Markov processes,
In Ecole d'Ete de Probabilites de Saint-Flour XXI-1991, volume 1541 of
Lecture Notes in Math., pages 1-260. Springer, Berlin, 1993.
Math Review link
-
D. A. Dawson and K. Fleischmann,
Longtime behavior of branching processes controlled by branching catalysts.
Preprint, 1996.
Math Review article not available.
-
D. A. Dawson and K. Fleischmann,
A continuous super-Brownian motion in a super-Brownian medium,
J. Theoret. Probab., 10: 213-276, 1997.
Math Review link
-
D. A. Dawson and P. March,
Resolvent estimates for Fleming-Viot operators and uniqueness of solutions
to related martingale problems, J. Funct. Anal., 132: 417-472, 1995.
Math Review link
-
D. A. Dawson and E. A. Perkins,
Historical processes, Mem. Amer. Math. Soc., 93, 1991.
Math Review link
-
D. A. Dawson and E. A. Perkins,
Long-time behaviour and co-existence in a mutually catalytic branching
model. Preprint, 1997. To appear in Ann Probab.
Math Review article not available.
-
C. Dellacherie and P.-A. Meyer,
Probabilities and Potential, Number 29 in Mathematics Studies.
North-Holland, Amsterdam, 1978.
Math Review link
-
C. Dellacherie and P.-A. Meyer,
Probabilities and Potential B, Number 72 in Mathematics Studies.
North-Holland, Amsterdam, 1982.
Math Review link
-
E. B. Dynkin,
Three classes of infinite dimensional diffusions, J. Funct. Anal.,
86:75-110, 1989.
Math Review link
-
E. B. Dynkin,
Path processes and historical processes, Probab. Theory Relat. Fields,
90:89-115, 1991.
Math Review link
-
E. B. Dynkin,
On regularity of superprocesses, Probab. Theory Relat. Fields, 95:263-281,
1993.
Math Review link
-
N. El-Karoui and S. Roelly,
Proprietes de martingales, explosion et representation de Levy-Khintchine
d'une class de processus de branchement a valeurs mesures. Stoch. Proc. Appl.,
39: 239-266, 1991.
Math Review link
-
A. M. Etheridge and K. Fleischmann,
Persistence of a two-dimensional super-Brownian motion in a catalytic
medium, Preprint, 1997.
Math Review article not available.
-
S. N. Ethier and T. G. Kurtz,
Markov Processes: Characterization and Convergence, Wiley, New York, 1986.
Math Review link
-
S. N. Evans and E. A. Perkins,
Absolute continuity results for superprocesses with some applications,
Trans. Amer. Math. Soc., 325: 661-681, 1991.
Math Review link
-
S. N. Evans and E. A. Perkins,
Measure-valued branching diffusions with singular interactions, Canad. J.
Math., 46: 120-168, 1994.
Math Review link
-
S. N. Evans and E. A. Perkins,
Explicit stochastic integral representations for historical functionals,
Ann. Prob., 23: 1772-1815, 1995.
Math Review link
-
P. J. Fitzsimmons,
Construction and regularity of measure-valued Markov branching processes,
Israel J. Math., 64: 337-361, 1988.
Math Review link
-
K. Fleischmann and A. Klenke,
Smooth density field of catalytic super-Brownian motion, Preprint, 1997.
Math Review article not available.
-
D. N. Hoover and H. J. Keisler,
Adapted probability distributions, Trans. Amer. Math. Soc., 286: 159-201,
1984.
Math Review link
-
N. Ikeda and S. Watanabe,
Stochastic Differential Equations and Diffusion Processes, North-Holland,
Amsterdam, 1981.
Math Review link
-
M. Lopez,
Path properties and convergence of interacting superprocesses, PhD thesis,
University of British Columbia, 1996.
Math Review article not available.
-
L. Mytnik,
Uniqueness of a competing species model, Preprint, 1997.
Math Review article not available.
-
C. Neuhauser and S. W. Pacala,
An explicitly spatial version of the Lotka-Volterra model with interspecific
competition, Preprint, 1997.
Math Review article not available.
-
L. Overbeck,
Nonlinear superprocesses, Ann. Probab., 24: 743-760, 1996.
Math Review link
-
E. A. Perkins,
Measure-valued branching diffusion with spatial interactions, Prob. Theory
Relat. Fields, 94: 189-245, 1992.
Math Review link
-
E. A. Perkins,
On the martingale problem for interactive measure-valued branching
diffusions, Mem. Amer. Math. Soc., 115, 1995.
Math Review link
-
J. B. Walsh,
An introduction to stochastic partial differential equations. In Ecole d'Ete
de Probabilites de Saint-Flour XIV-1984, volume 1180 of Lecture Notes in
Math., pages 265-439, Springer, Berlin, 1986.
Math Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|