![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
CLT for Linear Spectral Statistics of Wigner matrices
|
Zhidong Bai, Northeast Normal University, Changchun Xiaoying Wang, Northeast Normal University, Changchun Wang Zhou, National University of Singapore |
Abstract
In this paper, we prove that the spectral empirical process of
Wigner matrices under sixth-moment conditions, which is indexed by a
set of functions with continuous fourth-order derivatives on an open
interval including the support of the semicircle law, converges
weakly in finite dimensions to a Gaussian process.
|
Full text: PDF
Pages: 2391-2417
Published on: November 1, 2009
|
Bibliography
- Arnold, Ludwig. On the asymptotic distribution of the eigenvalues of random matrices. J. Math. Anal. Appl. 20 1967 262--268. MR0217833 (36 #922)
- Arnold, L. On Wigner's semicircle law for the eigenvalues of random matrices. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 191--198. MR0348820 (50 #1315)
- Bai, Z. D. Convergence rate of expected spectral distributions of large random matrices. I. Wigner matrices. Ann. Probab. 21 (1993), no. 2, 625--648. MR1217559 (95a:60039)
- Bai, Z. D. Methodologies in spectral analysis of large-dimensional random matrices, a review.With comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author. Statist. Sinica 9 (1999), no. 3, 611--677. MR1711663 (2000e:60044)
- Bai, Z. D.; Miao, Baiqi; Tsay, Jhishen. Convergence rates of the spectral distributions of large Wigner matrices. Int. Math. J. 1 (2002), no. 1, 65--90. MR1825933 (2003d:60071)
- Bai, Z. D.; Yao, J. On the convergence of the spectral empirical process of Wigner matrices. Bernoulli 11 (2005), no. 6, 1059--1092. MR2189081 (2006g:60034)
- Bai, Z. D.; Silverstein, Jack W. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab. 26 (1998), no. 1, 316--345. MR1617051 (99b:60041)
- Bai, Z. D. and Silverstein, J. W. (2006). Spectral analysis of large dimensional random matrices. Mathematics Monograph Series 2, Science Press, Beijing.
- Bai, Z. D. and Yin, Y. Q. (1988). Necessary and sufficient conditions for the almost sure convergence of the largest eigenvalue of Wigner matrices. Ann. Probab. 16 1729--1741.
- Costin, O. and Lebowitz, J. (1995). Gaussian fluctuations in random matrices. Physical Review Letters 75 69--72.
- Horn, Roger A.; Johnson, Charles R. Matrix analysis.Corrected reprint of the 1985 original.Cambridge University Press, Cambridge, 1990. xiv+561 pp. ISBN: 0-521-38632-2 MR1084815 (91i:15001)
- Johansson, Kurt. On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91 (1998), no. 1, 151--204. MR1487983 (2000m:82026)
- Khorunzhy, Alexei M.; Khoruzhenko, Boris A.; Pastur, Leonid A. Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37 (1996), no. 10, 5033--5060. MR1411619 (97j:82082)
- Collins, Benoˆıt; Mingo, James A.; Śniady, Piotr; Speicher, Roland. Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants. Doc. Math. 12 (2007), 1--70 (electronic). MR2302524 (2009d:15057)
- Mingo, James A.; Śniady, Piotr; Speicher, Roland. Second order freeness and fluctuations of random matrices. II. Unitary random matrices. Adv. Math. 209 (2007), no. 1, 212--240. MR2294222 (2009c:15027)
- Mingo, James A.; Speicher, Roland. Second order freeness and fluctuations of random matrices. I. Gaussian and Wishart matrices and cyclic Fock spaces. J. Funct. Anal. 235 (2006), no. 1, 226--270. MR2216446 (2007h:46080)
- Pastur, L. A. and Lytova A. (2009) Central Limit Theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Prob. 37, 1778-1840.
- Sinai, Ya.; Soshnikov, A. Central limit theorem for traces of large random symmetric matrices with independent matrix elements. Bol. Soc. Brasil. Mat. (N.S.) 29 (1998), no. 1, 1--24. MR1620151 (99f:60053)
- Wigner, Eugene P. Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math. (2) 62 (1955), 548--564. MR0077805 (17,1097c)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|