![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Plaquettes, Spheres, and Entanglement
|
Geoffrey R Grimmett, University of Cambridge Alexander E Holroyd, Microsoft Research |
Abstract
The high-density plaquette percolation model in d dimensions contains a surface
that is homeomorphic to the (d-1)-sphere and encloses the origin. This is
proved by a path-counting argument in a dual model. When d=3, this permits an
improved lower bound on the critical point pe of entanglement percolation,
namely pe ≥ μ-2 where μ is the connective constant for self-avoiding walks
on Z3. Furthermore, when the edge density p is below this bound, the radius
of the entanglement cluster containing the origin has an exponentially decaying
tail.
|
Full text: PDF
Pages: 1415-1428
Published on: September 19, 2010
|
Bibliography
- Aizenman, Michael; Barsky, David J. Sharpness of the phase transition in percolation models.
Comm. Math. Phys. 108 (1987), no. 3, 489--526. MR0874906 (88c:82026)
- Aizenman, M.; Chayes, J. T.; Chayes, L.; Fröhlich, J.; Russo, L. On a sharp transition from area law to perimeter law in a system of
random surfaces.
Comm. Math. Phys. 92 (1983), no. 1, 19--69. MR0728447 (85d:82006)
- Aizenman, Michael; Grimmett, Geoffrey. Strict monotonicity for critical points in percolation and
ferromagnetic models.
J. Statist. Phys. 63 (1991), no. 5-6, 817--835. MR1116036 (92i:82060)
- Atapour, Mahshid; Madras, Neal. On the number of entangled clusters.
J. Stat. Phys. 139 (2010), no. 1, 1--26. MR2602981
- Barsky, David J.; Grimmett, Geoffrey R.; Newman, Charles M. Percolation in half-spaces: equality of critical densities and
continuity of the percolation probability.
Probab. Theory Related Fields 90 (1991), no. 1, 111--148. MR1124831 (92m:60086)
- Bezuidenhout, Carol; Grimmett, Geoffrey. The critical contact process dies out.
Ann. Probab. 18 (1990), no. 4, 1462--1482. MR1071804 (91k:60111)
- Dirr, N.; Dondl, P. W.; Grimmett, G. R.; Holroyd, A. E.; Scheutzow, M. Lipschitz percolation.
Electron. Commun. Probab. 15 (2010), 14--21. MR2581044
- Grimmett, Geoffrey. Percolation.
Second edition.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6 MR1707339 (2001a:60114)
- Grimmett, Geoffrey; Hiemer, Philipp. Directed percolation and random walk.
In and out of equilibrium (Mambucaba, 2000),
273--297, Progr. Probab., 51, Birkhäuser Boston, Boston, MA, 2002. MR1901958 (2003b:60159)
- Grimmett, Geoffrey R.; Holroyd, Alexander E. Entanglement in percolation.
Proc. London Math. Soc. (3) 81 (2000), no. 2, 485--512. MR1770617 (2001j:60185)
- Grimmett, Geoffrey R.; Holroyd, Alexander E. Geometry of Lipschitz percolation. Preprint,
arXiv:1007.3762 (2010).
- Grimmett, G. R.; Marstrand, J. M. The supercritical phase of percolation is well behaved.
Proc. Roy. Soc. London Ser. A 430 (1990), no. 1879, 439--457. MR1068308 (91m:60186)
- Häggström, Olle. Uniqueness of the infinite entangled component in three-dimensional
bond percolation.
Ann. Probab. 29 (2001), no. 1, 127--136. MR1825145 (2002a:60159)
- Holroyd, Alexander E. Existence of a phase transition for entanglement percolation.
Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 2, 231--251. MR1765912 (2001k:82051)
- Holroyd, Alexander E. Entanglement and rigidity in percolation models.
In and out of equilibrium (Mambucaba, 2000),
299--307, Progr. Probab., 51, Birkhäuser Boston, Boston, MA, 2002. MR1901959 (2003b:60161)
- Holroyd, Alexander E. Inequalities in entanglement percolation.
J. Statist. Phys. 109 (2002), no. 1-2, 317--323. MR1927926 (2003h:82044)
- Kantor, Yacov; Hassold, Gregory N. Topological entanglements in the percolation problem.
Phys. Rev. Lett. 60 (1988), no. 15, 1457--1460. MR0935098 (89b:82001)
- Menʹshikov, M. V. Coincidence of critical points in percolation problems.
(Russian) Dokl. Akad. Nauk SSSR 288 (1986), no. 6, 1308--1311. MR0852458 (88k:60175)
- Menʹshikov, M. V.; Molchanov, S. A.; Sidorenko, A. F. Percolation theory and some applications.
(Russian) Translated in J. Soviet Math. 42 (1988), no. 4, 1766--1810.
Itogi Nauki i Tekhniki, Probability theory. Mathematical statistics. Theoretical cybernetics,
Vol. 24 (Russian),
53--110, i, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986. MR0865158 (88m:60273)
- Pönitz, André; Tittmann, Peter. Improved upper bounds for self-avoiding walks in $Zsp d$.
Electron. J. Combin. 7 (2000), Research Paper 21, 10 pp. (electronic). MR1754251 (2000m:05015)
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|