 |
|
|
| | | | | |
|
|
|
|
|
Stochastic nonlinear wave equations in local Sobolev spaces
|
Martin Ondrejat, Institute of Information Theory and Automation, Academy of Sciences of the Czech |
Abstract
Existence of weak solutions of stochastic wave equations with nonlinearities of a critical growth driven by spatially homogeneous Wiener processes is established in local Sobolev spaces and local energy estimates for these solutions are proved. A new method to construct weak solutions is employed.
|
Full text: PDF
Pages: 1041-1091
Published on: July 6, 2010
|
Bibliography
-
P. Billingsley, Convergence of probability measures. John Wiley & Sons, Inc., New York-London-Sydney 1968. Math. Review 38 #1718
-
Z. Brze'zniak, D. Gc atarek, Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces. Stochastic Process. Appl. 84 (1999), no. 2, 187--225. Math. Review 2000m:60076
-
Z. Brze'{z}niak, M. Ondrej'at, Stochastic wave equations with values in Riemannian manifolds, Stochastic Partial Differential Equations and Applications - VIII, Quaderni di Matematica, Series edited by Dipartimento di Matematica Seconda Universit`a di Napoli. Math. Review number not available.
-
Z. Brze'{z}niak, M. Ondrej'at, Strong solutions to stochastic wave equations with values in Riemannian manifolds. J. Funct. Anal. 253 (2007), no. 2, 449-481. Math. Review 2009g:60085
-
Z. Brze'zniak, S. Peszat, Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process, Studia Math. 137, no. 3, 261--299 (1999). Math. Review 2000m:60077
-
E. Caba~na, On barrier problems for the vibrating string, Z. Wahrsch. Verw. Gebiete 22 (1972) 13-24. Math. Review 48 #1332
-
R. Carmona, D. Nualart, Random nonlinear wave equations: propagation of singularities, Ann. Probab. 16, no. 2 (1988) 730-751. Math. Review 89k:60081
-
R. Carmona, D. Nualart, Random nonlinear wave equations: smoothness of the solutions, Probab. Theory Related Fields 79, no. 4 (1988) 469-508. Math. Review 90f:60112
-
A. Chojnowska-Michalik, Stochastic differential equations in Hilbert spaces, Probability theory, Banach center publications, Vol. 5, 1979. Math. Review 81j:60068
-
P.-L. Chow, Stochastic wave equations with polynomial nonlinearity, Ann. Appl. Probab. 12, no. 1 (2002) 361-381. Math. Review 2003e:60135
-
G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge 1992. Math. Review 95g:60073
-
R. C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s, Electron. J. Probab. 4, no. 6 (1999) 1-29. Math. Review 2000b:60132
-
R. C. Dalang, N. E. Frangos, The stochastic wave equation in two spatial dimensions, Ann. Probab. 26, no. 1 (1998) 187-212. Math. Review 99c:60127
-
R. C. Dalang, O. L'ev^eque, Second-order linear hyperbolic SPDEs driven by isotropic Gaussian noise on a sphere, Ann. Probab. 32, no. 1B (2004) 1068-1099. Math. Review 2005h:60182
-
A. Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., 1969. Math. Review 56 #3433
-
A. M. Garsia, E. Rodemich and H. Rumsey, Jr., A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J. 20 (1970) 565-578. Math. Review 56 #3433
-
D. Gc atarek, B. Gol dys, Beniamin, On weak solutions of stochastic equations in Hilbert spaces. Stochastics Stochastics Rep. 46 (1994), no. 1-2, 41--51. Math. Review 2001f:60063
-
J. Ginibre, G. Velo, The Cauchy problem for the ${rm O}(N),,C{rm P}(N-1),$ and $Gsb{C}(N,,p)$ models}, Ann. Physics 142, no. 2, 393--415 (1982). Math. Review 84i:58027
-
J. Ginibre, G. Velo, The global Cauchy problem for the non-linear Klein-Gordon equation, Math. Z. 189, 487-505 (1985). Math. Review 86f:35149
-
M. Hofmanov'a, Weak solutions to stochastic differential equations, MSc thesis, Charles University Prague, 2010. Review number not available.
-
A. Jakubowski, The almost sure Skorokhod representation for subsequences in nonmetric spaces. Teor. Veroyatnost. i Primenen. 42 (1997), no. 1, 209--216; translation in Theory Probab. Appl. 42 (1997), no. 1, 167--174 (1998). Math. Review 98h:60007
-
A. Karczewska, J. Zabczyk, A note on stochastic wave equations, in: Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), 501-511, Lecture Notes in Pure and Appl. Math. 215, Dekker, New York, 2001. Math. Review 2002b:60112
-
A. Karczewska, J. Zabczyk, Stochastic PDE's with function-valued solutions, in: Infinite dimensional stochastic analysis (Amsterdam, 1999), 197-216, Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000. Math. Review 2002h:60132
-
N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces. Graduate Studies in Mathematics, 96. American Mathematical Society, Providence, RI, 2008. Math. Review 2009k:35001
-
M. Marcus, V. J. Mizel, Stochastic hyperbolic systems and the wave equation, Stochastics Stochastic Rep. 36 (1991) 225-244. Math. Review 93f:60095
-
B. Maslowski, J. Seidler, I. Vrkov c, Integral continuity and stability for stochastic hyperbolic equations, Differential Integral Equations 6, no. 2 (1993) 355-382. Math. Review 94b:60071
-
A. Millet, P.-L. Morien, On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution, Ann. Appl. Probab. 11, no. 3 (2001) 922-951. Math. Review 2002i:60118
-
A. Millet, M. Sanz-Sol'e, A stochastic wave equation in two space dimension: smoothness of the law, Ann. Probab. 27, no. 2 (1999) 803-844. Math. Review 2001e:60130
-
M. Ondrej'at, Existence of global martingale solutions to stochastic hyperbolic equations driven by a spatially homogeneous Wiener process, Stoch. Dyn. 6, no. 1 (2006) 23-52. Math. Review 2006m:60081
-
M. Ondrej'at, Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process. J. Evol. Equ. 4 (2004), no. 2, 169--191. Math. Review 2005e:60134
-
M. Ondrej'at, Stochastic wave equation with critical nonlinearities: temporal regularity and uniqueness. J. Differential Equations 248 (2010), no. 7, 1579--1602. Math. Review MR2593599
-
M. Ondrej'at, Uniqueness for stochastic non-linear wave equations, Nonlinear Analysis TMA 67, no. 12 (2007) 3287--3310. Math. Review 2008k:60153
-
M. Ondrej'at, Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. 426 (2004), 63 pp. Math. Review 2005e:60133
-
A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. Math. Review 85g:47061
-
S. Peszat, The Cauchy Problem for a Non Linear Stochastic Wave Equation in any Dimension, J. Evol. Equ. 2, 383-394 (2002). Math. Review 2003k:60157
-
S. Peszat, J. Zabczyk, Non Linear Stochastic Wave and Heat Equations, Probability Theory Related Fields 116, No. 3, 421-443, 2000. Math. Review 2001f:60071
-
S. Peszat, J. Zabczyk, Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Processes and Appl. 72, 187-204 (1997). Math. Review 99k:60166
-
M. Reed, Abstract Non Linear Wave Equations, Lecture Notes in Mathematics 507, Springer-Verlag, 1976. Math. Review 58 #29290
-
L. C. G. Rogers, D. Williams, Diffusions, Markov processes, and martingales. Vol. 2. Itô calculus. Reprint of the second (1994) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. Math. Review 2001g:60189
-
W. Rudin, Functional analysis, Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991. Math. Review 92k:46001
-
I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction, Bull. Soc. Math. France 91 (1963) 129-135. Math. Review 27 #3928
-
J. Shatah, M. Struwe, Geometric wave equations. Courant Lecture Notes in Mathematics, 2. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1998. Math. Review 2000i:35135
-
J. Shatah, M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, no. 7 (1994). Math. Review 95e:35132
-
W. A. Strauss, On weak solutions of semi-linear hyperbolic equations, Anais Acad. Brasil. Ci. 42 (1970) 645-651. Math. Review 46 #5837
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|