![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
Uniqueness for the Skorokhod Equation with Normal Reflection in Lipschitz Domains
|
Richard F. Bass, University of Washington |
Abstract
We consider the Skorokhod equation
$$dX_t=dW_t+(1/2)nu(X_t), dL_t$$
in a domain $D$,
where $W_t$ is Brownian motion in $R^d$, $nu$ is the inward
pointing normal vector on the boundary of $D$, and $L_t$ is
the local time on the boundary. The
solution to this equation is reflecting Brownian motion in $D$.
In this paper we show that in Lipschitz domains the solution to
the Skorokhod equation is unique in law.
|
Full text: PDF
Pages: 1-29
Published on: August 16, 1996
|
Bibliography
-
R.F. Bass, Probabilistic Techniques in Analysis. New York,
Springer, 1995.
Math Review link
-
R.F. Bass and P. Hsu, Some potential theory for
reflecting Brownian motion in H"older and Lipschitz
domains. Ann. Probability 19 (1991) 486--508.
Math Review link
-
R.F. Bass and P. Hsu, The semimartingale structure
of reflecting Brownian motion. Proc. Amer. Math. Soc.
108 (1990) 1007--1010.
Math Review link
-
R.F. Bass and D. Khoshnevisan, Local times on curves and
uniform invariance principles.
Probab. Th. & related Fields 92 (1992) 465--492.
Math Review link
-
Z.Q. Chen, On reflecting diffusion processes and Skorokhod decomposition.
Prob. Th. related Fields 94 (1993) 281--315.
Math Review link
-
Z.Q. Chen, P.J. Fitzsimmons, and R.J. Williams,
Reflecting Brownian motions: quasimartingales and strong Caccioppoli sets.
Potential Analysis 2 (1993) 219--243.
Math Review link
-
P. Dupuis and H. Ishii, SDEs with oblique reflection on
nonsmooth domains. Ann. Probab. 21 (1993) 554--580.
Math Review link
-
M. Fukushima, Dirichlet Forms and Markov Processes.
Tokyo, Kodansha, 1980.
Math Review link
-
M. Fukushima, Y. Oshima, and M. Takeda,
Dirichlet Forms and Symmetric Markov Processes.
Berlin, de Gruyter, 1994.
Math Review link
-
M. Fukushima and M. Tomisaki, Reflecting diffusions
on Lipschitz domains with cusps -- analytic construction and Skorokhod
representation. Potential Anal. 4 (1995) 377--408.
Math Review not available.
-
D. Gilbarg and N.S. Trudinger, Elliptic
Partial Differential Equations of Second Order, 2nd ed.
New York, Springer, 1983.
Math Review link
-
D.S. Jerison and C.E. Kenig,
Boundary value problems on Lipschitz domains. In: Studies
in Partial Differential Equations.
Washington, D.C., Math. Assoc. Amer., 1982.
Math Review link
-
F.B. Knight, On invertibility of martingale time changes.
In: Seminar on Stochastic Processes, 1987. Boston,
Birkh"auser, 1988.
Math Review link
-
P.L. Lions and A.S. Sznitman, Stochastic differential
equations with reflecting boundary conditions.
Comm. Pure Appl. Math. 37 (1984) 511--537.
Math Review link
-
V.G. Maz'ja, Sobolev Spaces. New York, Springer-Verlag,
1985.
Math Review link
-
D.W. Stroock and S.R.S. Varadhan, Diffusions processes
with boundary conditions. Comm. Pure Appl. Math. 24 (1971) 147-225.
Math Review link
-
D.W. Stroock and S.R.S. Varadhan, Multidimensional
Diffusion Processes.
New York, Springer, 1979.
Math Review link
-
R.J. Williams and W.A. Zheng, On reflecting Brownian motion -- a
weak convergence approach. Ann. de l'I.H. Poincare 26 (1990) 461--488.
Math Review link
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|