![](images/spacer.gif) |
|
|
| | | | | |
|
|
|
|
|
The Laws of Chung and Hirsch for Cauchy's Principal Values Related to Brownian Local Times
|
Yueyun Hu, Universite Paris VI |
Abstract
Two Chung-type and Hirsch-type laws are
established to describe the liminf asymptotic behaviours of the Cauchy's
principal values related to Brownian local times. These results are
generalized to a class of Brownian additive functionals.
|
Full text: PDF
Pages: 1-16
Published on: April 4, 2000
|
Bibliography
- Bertoin, J.,
On the Hilbert transform of the local times of a
Lévy process.
Bull. Sci. Math. 119
(1995)
147--156
Math. Review
96e:60143
- Bertoin, J.,
Lévy Processes.
Cambridge Press, 1996.
Math. Review
98e:60117
- Bertoin, J.,
Cauchy's principal value of local times of Lévy's
processes with no negative jumps via continuous
branching processes.
Electronic J. Probab. 2
(1997)
1--12
Math. Review 99b:60120
- Biane, Ph. and Yor, M.,
Valeurs principales associées aux temps
locaux browniens.
Bull. Sci. Math. 111
(1987) 23--101.
Math. Review 88g:60188
- Chaumont, L.,
Excursion normalisée, méandre et pont
pour les processus de Lévy stables.
Bull. Sci. Math. 121
(1997)
377--403.
Math. Review 99a:60077
- Chung, K.L.,
Excursions in Brownian motion.
Ark. Math. 14
(1976)
155--177
Math. Review
57:7791
- Csáki, E., Csörgo, M., Földes, A. and
Shi, Z.,
Increment sizes of the principal value of Brownian
local time.
Probab. Th. Rel. Fields (to appear)
- Csáki, E., Csörgo, M., Földes, A. and
Shi, Z.,
Path
properties of Cauchy's principal values related to
local time.
Studia Sci. Math. Hungar (to appear)
- Csáki, E., Erdos, P. and Révész, P.,
On the length of the longest excursion.
Z. Wahrsch. verw. Gebiete 68
(1985)
365--382.
Math. Review 86f:60086
- Csáki, E., Shi, Z. and Yor, M.,
Fractional Brownian motions as ``higher-order" fractional derivatives
of Brownian local times.
Colloquium on Limit Theorems in
Probability and Statistics (Balatonlelle,
Hungary) 1999.
- Csörgo, M. and Révész, P.,
Strong Approximations in
Probability and Statistics
Academic Press, New York
(1981)
Math. Review 84d:60050
- Donsker, M.D. and Varadhan, S.R.S.,
On the laws of the
iterated logarithm for local times.
Comm. Pure Appl. Math. 30
(1977) 707--753.
Math. Review 57:1667
- Erdos, P.,
On the law of the iterated logarithm.
Ann. Math. 43
(1942) 419--436.
Math. Review 4,16j
- Fitzsimmons, P.J. and Getoor, R.K.,
On the distribution of
the Hilbert transform of the local time of a symmetric Lévy
processes.
Ann. Probab. 20
(1992) 1484--1497.
Math. Review 93j:60112
- Fitzsimmons, P.J. and Getoor, R.K.,
Limit theorems and variation
properties for fractional derivatives of local time of a stable process.
Ann. Inst. Henri Poincaré 28
(1992) 311--333.
Math. Review 93j:60105
- Getoor, R.K.,
First passage times for symmetric stable processes in
space.
Trans. Amer. Math. Soc. 101
(1961) 75--90
Math. Review 25:604
- Gruet, J.C. and Shi, Z.,
The occupation time of
Brownian motion in a ball.
J. Theoret. Probab. 9
(1996) 429--445
Math. Review 97e:60135
- Hu, Y. and Shi, Z.,
An iterated logarithm law for Cauchy's
principal value of Brownian local times.
Exponential functionals and principal values related to Brownian motion,
(1997) 211--228 Bibl. Rev. Mat. Iberoamericana, Madrid.
Math. Review 1648661
- Hu, Y. and Shi, Z.,
Shortest excursion lengths.
Ann. Inst.
Henri Poincaré 1
(1999) 103--120.
Math. Review 99k:60206
- Imhof, J.P.,
Density factorizations for Brownian motion
and the three-dimensional Bessel processes and applications.
J. Appl. Probab. 21
(1984) 500--510.
Math. Review 85j:60152
- Jeanblanc, M., Pitman, J. and Yor, M.,
The Feynman-Kac formula and decomposition of Brownian paths.
Mat. Apl. Comput. 16 (1997) 27--52.
Math. Review 98f:60156
- Khoshnevisan, D. and Shi, Z.,
Chung's law for integrated
Brownian motion.
Trans.
Amer. Math. Soc. 350 (1998) 4253--4264.
Math. Review 98m:60056
- Kochen, S.B. and Stone, C.J.,
A note on the Borel--Cantelli
lemma.
Illinois J. Math. 8 (1964) 248--251.
Math. Review 28:4562
- Kolmogorov, A.N.,
Sulla determinazione empirica delle
leggi di probabilita.
Giorn. Ist. Ital. Attuari 4 (1933) 1--11.
- Lamperti, J.,
An occupation time theorem for a class of
stochastic processes.
Trans. Amer. Math. Soc. 88
(1958) 380--387.
Math. Review 20:1372
- Pitman, J.W. and Yor, M.,
A decomposition of Bessel
bridges.
Z. Wahrsch. verw. Gebiete 59 (1982) 425--457.
Math. Review 84a:60091
- Pitman, J.W. and Yor, M.,
Arcsine laws and interval
partitions derived from a stable subordinator.
Proc. London
Math. Soc. 65 (1992) 326--356.
Math. Review 93e:60152
- Pitman, J.W. and Yor, M.,
The two-parameter
Poisson-Dirichlet distribution derived from a stable
subordinator.
Ann. Probab. 25 (1997) 855--900.
Math. Review 98f:60147
- Revuz, D. and Yor, M.,
Continuous
Martingales and Brownian Motion. (2nd edition)
Springer, Berlin, 1994.
Math. Review 95h:60072
- Shiryaev, A.N.,
Probability. (2nd edition)
Springer, Berlin, 1996.
Math. Review 97c:60003
- Shorack, G.R. and Wellner, J.A.,
Empirical Processes with
Applications to Statistics.
Wiley, New York, 1986.
Math. Review 88e:60002
- Smirnov, N.V.,
On the estimation of the discrepancy
between empirical curves of distribution for two independent
samples.
Bull. Math. Univ. Moscou 2 (1939)
3--14. (in Russian)
- Strassen, V.,
An invariance principle for the law
of the iterated logarithm.
Z. Wahrsch. verw. Gebiete. 3 (1964) 211--226.
Math. Review 30:5379
- Yamada, T.,
Principal values of Brownian local
times and their related topics.
It^{o}'s Stochastic
Calculus and Probability Theory (eds.: N. Ikeda, S.Watanabe,
M. Fukushima, H. Kunita) pp. 413--422, Springer, 1996.
Math. Review 98f:60160
- Yor, M.,
Some Aspects of Brownian Motion.
Part I (Some Special Functionals).
Lectures in
Math. ETH Z"urich, Birkh"{a}user, Berlin, 1992.
Math. Review 93j:60155
- Yor, M. (editor),
Exponential Functionals and
Principal Values Related to Brownian Motion.
Biblioteca de la Revista Matem'atica Iberoamericana, Madrid, 1997.
Math. Review 99d:60003
|
|
|
|
|
|
|
| | | | |
Electronic Journal of Probability. ISSN: 1083-6489 |
|